关于多项式的零和有界无穷级数

P. N Shivakumar, Yang Zhang, Ashish Gupta
{"title":"关于多项式的零和有界无穷级数","authors":"P. N Shivakumar, Yang Zhang, Ashish Gupta","doi":"10.46719/dsa2023.32.09","DOIUrl":null,"url":null,"abstract":". In this paper, we consider a given in(cid:12)nite series in x of the form y ( x ) = ∑ 1 k =0 b k x k expressed formally also by an in(cid:12)nite product as y ( x ) = (cid:5) 1 k =1 (1 (cid:0) xa k ) into real positive zeros a i ; i = 1 ; 2 ; : : : ; 1 forming a strictly increasing sequence. For consideration of polynomials of degree n , we replace suitably 1 by n . Using the known formal solution of a second linear differential y \" = f ( x ) y; y (0) = y 0 ; y ′ (0) = y ′ 0 in the form y ( x ) = ∑ 1 k =0 d k x k , we demonstrate that the above in(cid:12)nite product form of y ( x ) yields the set of in(cid:12)nite equations of the form for a suitable f ( x ). ∑ 1 k =1 ( a k ) (cid:0) p = c p , p = 1 ; 2 ; : : : ; 1 with c ′ k s depending on f ( x ), its derivarives at x = 0 and b ′ k s. Recognizing the in(cid:12)nite matrix as the in(cid:12)nite Vandermonde matrix, some bounds for the zeros are given.","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Zeros of Polynomials and Infinite Series With Some Bounds\",\"authors\":\"P. N Shivakumar, Yang Zhang, Ashish Gupta\",\"doi\":\"10.46719/dsa2023.32.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we consider a given in(cid:12)nite series in x of the form y ( x ) = ∑ 1 k =0 b k x k expressed formally also by an in(cid:12)nite product as y ( x ) = (cid:5) 1 k =1 (1 (cid:0) xa k ) into real positive zeros a i ; i = 1 ; 2 ; : : : ; 1 forming a strictly increasing sequence. For consideration of polynomials of degree n , we replace suitably 1 by n . Using the known formal solution of a second linear differential y \\\" = f ( x ) y; y (0) = y 0 ; y ′ (0) = y ′ 0 in the form y ( x ) = ∑ 1 k =0 d k x k , we demonstrate that the above in(cid:12)nite product form of y ( x ) yields the set of in(cid:12)nite equations of the form for a suitable f ( x ). ∑ 1 k =1 ( a k ) (cid:0) p = c p , p = 1 ; 2 ; : : : ; 1 with c ′ k s depending on f ( x ), its derivarives at x = 0 and b ′ k s. Recognizing the in(cid:12)nite matrix as the in(cid:12)nite Vandermonde matrix, some bounds for the zeros are given.\",\"PeriodicalId\":51019,\"journal\":{\"name\":\"Dynamic Systems and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamic Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46719/dsa2023.32.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46719/dsa2023.32.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Zeros of Polynomials and Infinite Series With Some Bounds
. In this paper, we consider a given in(cid:12)nite series in x of the form y ( x ) = ∑ 1 k =0 b k x k expressed formally also by an in(cid:12)nite product as y ( x ) = (cid:5) 1 k =1 (1 (cid:0) xa k ) into real positive zeros a i ; i = 1 ; 2 ; : : : ; 1 forming a strictly increasing sequence. For consideration of polynomials of degree n , we replace suitably 1 by n . Using the known formal solution of a second linear differential y " = f ( x ) y; y (0) = y 0 ; y ′ (0) = y ′ 0 in the form y ( x ) = ∑ 1 k =0 d k x k , we demonstrate that the above in(cid:12)nite product form of y ( x ) yields the set of in(cid:12)nite equations of the form for a suitable f ( x ). ∑ 1 k =1 ( a k ) (cid:0) p = c p , p = 1 ; 2 ; : : : ; 1 with c ′ k s depending on f ( x ), its derivarives at x = 0 and b ′ k s. Recognizing the in(cid:12)nite matrix as the in(cid:12)nite Vandermonde matrix, some bounds for the zeros are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: The aim of this quarterly journal is to provide an international forum for the information in the theory and practice of Dynamic Systems and Applications. This journal publishes carefully selected original research papers from stochastic/deterministic : Differential Equations ,Integral Equations, Integro-Differential Equations, Discrete Analogs of these equations, and Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信