Yan Xu, Graham S. Kerr, Vanessa Polito, Nengyi Huang, Ju Jing, Haimin Wang
{"title":"2022年3月30日X1.3太阳耀斑期间紫外线线的极端红翼增强","authors":"Yan Xu, Graham S. Kerr, Vanessa Polito, Nengyi Huang, Ju Jing, Haimin Wang","doi":"10.3847/1538-4357/acf8c6","DOIUrl":null,"url":null,"abstract":"Abstract Here, we present the study of a compact emission source during an X1.3 flare on 2022 March 30. Within a ∼41 s period (17:34:48 UT to 17:35:29 UT), Interface Region Imaging Spectrograph observations show spectral lines of Mg ii , C ii , and Si iv with extremely broadened, asymmetric red wings. This source of interest (SOI) is compact, ∼1.″6, and is located in the wake of a passing ribbon. Two methods were applied to measure the Doppler velocities associated with these red wings: spectral moments and multi-Gaussian fits. The spectral-moments method considers the averaged shift of the lines, which are 85, 125, and 115 km s −1 for the Mg ii , C ii , and Si iv lines respectively. The red-most Gaussian fit suggests a Doppler velocity up to ∼160 km s −1 in all of the three lines. Downward mass motions with such high speeds are very atypical, with most chromospheric downflows in flares on the order 10–100 km s −1 . Furthermore, extreme-UV (EUV) emission is strong within flaring loops connecting two flare ribbons located mainly to the east of the central flare region. The EUV loops that connect the SOI and its counterpart source in the opposite field are much less brightened, indicating that the density and/or temperature is comparatively low. These observations suggest a very fast downflowing plasma in the transition region and upper chromosphere, which decelerates rapidly since there is no equivalently strong shift of the O I chromospheric lines. This unusual observation presents a challenge that models of the solar atmosphere’s response to flares must be able to explain.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"142 2","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme Red-wing Enhancements of UV Lines during the 2022 March 30 X1.3 Solar Flare\",\"authors\":\"Yan Xu, Graham S. Kerr, Vanessa Polito, Nengyi Huang, Ju Jing, Haimin Wang\",\"doi\":\"10.3847/1538-4357/acf8c6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Here, we present the study of a compact emission source during an X1.3 flare on 2022 March 30. Within a ∼41 s period (17:34:48 UT to 17:35:29 UT), Interface Region Imaging Spectrograph observations show spectral lines of Mg ii , C ii , and Si iv with extremely broadened, asymmetric red wings. This source of interest (SOI) is compact, ∼1.″6, and is located in the wake of a passing ribbon. Two methods were applied to measure the Doppler velocities associated with these red wings: spectral moments and multi-Gaussian fits. The spectral-moments method considers the averaged shift of the lines, which are 85, 125, and 115 km s −1 for the Mg ii , C ii , and Si iv lines respectively. The red-most Gaussian fit suggests a Doppler velocity up to ∼160 km s −1 in all of the three lines. Downward mass motions with such high speeds are very atypical, with most chromospheric downflows in flares on the order 10–100 km s −1 . Furthermore, extreme-UV (EUV) emission is strong within flaring loops connecting two flare ribbons located mainly to the east of the central flare region. The EUV loops that connect the SOI and its counterpart source in the opposite field are much less brightened, indicating that the density and/or temperature is comparatively low. These observations suggest a very fast downflowing plasma in the transition region and upper chromosphere, which decelerates rapidly since there is no equivalently strong shift of the O I chromospheric lines. This unusual observation presents a challenge that models of the solar atmosphere’s response to flares must be able to explain.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":\"142 2\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/acf8c6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acf8c6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
在这里,我们研究了2022年3月30日X1.3耀斑期间的紧凑型发射源。在大约41秒的时间内(17:34:48 UT至17:35:29 UT),界面区域成像光谱仪的观测显示,Mg ii、C ii和Si iv的光谱线具有非常宽的、不对称的红翼。这个兴趣源(SOI)是紧凑的,~ 1。″6,位于经过的丝带的尾迹处。采用了两种方法来测量与这些红翼相关的多普勒速度:谱矩和多高斯拟合。谱矩法考虑谱线的平均位移,Mg ii、C ii和Si iv谱线的平均位移分别为85、125和115 km s−1。最红高斯拟合表明,在所有三条线中,多普勒速度高达~ 160 km s−1。如此高速的质量向下运动是非常不典型的,在耀斑中大多数色球向下运动的速度为10-100 km s - 1。此外,极紫外(EUV)辐射在连接两个耀斑带的耀斑环内很强,主要位于耀斑中心区域的东部。连接SOI和相反场中对应源的EUV回路的亮度要低得多,表明密度和/或温度相对较低。这些观测结果表明,在过渡区和上层色球层有一个非常快速的下流等离子体,由于O - I色球层线没有同样强烈的移动,因此它的减速速度很快。这一不寻常的观测结果提出了一个挑战,太阳大气对耀斑反应的模型必须能够解释。
Extreme Red-wing Enhancements of UV Lines during the 2022 March 30 X1.3 Solar Flare
Abstract Here, we present the study of a compact emission source during an X1.3 flare on 2022 March 30. Within a ∼41 s period (17:34:48 UT to 17:35:29 UT), Interface Region Imaging Spectrograph observations show spectral lines of Mg ii , C ii , and Si iv with extremely broadened, asymmetric red wings. This source of interest (SOI) is compact, ∼1.″6, and is located in the wake of a passing ribbon. Two methods were applied to measure the Doppler velocities associated with these red wings: spectral moments and multi-Gaussian fits. The spectral-moments method considers the averaged shift of the lines, which are 85, 125, and 115 km s −1 for the Mg ii , C ii , and Si iv lines respectively. The red-most Gaussian fit suggests a Doppler velocity up to ∼160 km s −1 in all of the three lines. Downward mass motions with such high speeds are very atypical, with most chromospheric downflows in flares on the order 10–100 km s −1 . Furthermore, extreme-UV (EUV) emission is strong within flaring loops connecting two flare ribbons located mainly to the east of the central flare region. The EUV loops that connect the SOI and its counterpart source in the opposite field are much less brightened, indicating that the density and/or temperature is comparatively low. These observations suggest a very fast downflowing plasma in the transition region and upper chromosphere, which decelerates rapidly since there is no equivalently strong shift of the O I chromospheric lines. This unusual observation presents a challenge that models of the solar atmosphere’s response to flares must be able to explain.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.