冒牌货的变量选择:复合零假设

Pub Date : 2023-11-13 DOI:10.1016/j.jspi.2023.106119
Mehrdad Pournaderi, Yu Xiang
{"title":"冒牌货的变量选择:复合零假设","authors":"Mehrdad Pournaderi,&nbsp;Yu Xiang","doi":"10.1016/j.jspi.2023.106119","DOIUrl":null,"url":null,"abstract":"<div><p>The fixed-X knockoff filter is a flexible framework for variable selection with false discovery rate<span> (FDR) control in linear models with arbitrary design matrices<span><span> (of full column rank) and it allows for finite-sample selective inference via the Lasso estimates. In this paper, we extend the theory of the knockoff procedure to tests with composite null hypotheses, which are usually more relevant to real-world problems. The main technical challenge lies in handling composite </span>nulls in tandem with dependent features from arbitrary designs. We develop two methods for composite inference with the knockoffs, namely, shifted ordinary least-squares (S-OLS) and feature-response product perturbation (FRPP), building on new structural properties of test statistics under composite nulls. We also propose two heuristic variants of S-OLS method that outperform the celebrated Benjamini–Hochberg (BH) procedure for composite nulls, which serves as a heuristic baseline under dependent test statistics. Finally, we analyze the loss in FDR when the original knockoff procedure is naively applied on composite tests.</span></span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable selection with the knockoffs: Composite null hypotheses\",\"authors\":\"Mehrdad Pournaderi,&nbsp;Yu Xiang\",\"doi\":\"10.1016/j.jspi.2023.106119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fixed-X knockoff filter is a flexible framework for variable selection with false discovery rate<span> (FDR) control in linear models with arbitrary design matrices<span><span> (of full column rank) and it allows for finite-sample selective inference via the Lasso estimates. In this paper, we extend the theory of the knockoff procedure to tests with composite null hypotheses, which are usually more relevant to real-world problems. The main technical challenge lies in handling composite </span>nulls in tandem with dependent features from arbitrary designs. We develop two methods for composite inference with the knockoffs, namely, shifted ordinary least-squares (S-OLS) and feature-response product perturbation (FRPP), building on new structural properties of test statistics under composite nulls. We also propose two heuristic variants of S-OLS method that outperform the celebrated Benjamini–Hochberg (BH) procedure for composite nulls, which serves as a heuristic baseline under dependent test statistics. Finally, we analyze the loss in FDR when the original knockoff procedure is naively applied on composite tests.</span></span></p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823000885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823000885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

固定x仿假滤波器是一个灵活的框架,用于在具有任意设计矩阵(全列秩)的线性模型中具有错误发现率(FDR)控制的变量选择,并且它允许通过Lasso估计进行有限样本选择推理。在本文中,我们将仿制过程的理论扩展到具有复合零假设的检验,这通常与现实世界的问题更相关。主要的技术挑战在于处理组合空与任意设计的相关特征。基于复合零值下检验统计量的新结构特性,我们开发了两种与仿制品进行复合推理的方法,即位移普通最小二乘(S-OLS)和特征响应积摄动(FRPP)。我们还提出了S-OLS方法的两个启发式变体,它们优于著名的benjamin - hochberg (BH)方法,该方法可作为依赖检验统计量下的启发式基线。最后,我们分析了当原始仿制品程序被天真地应用于复合试验时,在FDR中的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Variable selection with the knockoffs: Composite null hypotheses

The fixed-X knockoff filter is a flexible framework for variable selection with false discovery rate (FDR) control in linear models with arbitrary design matrices (of full column rank) and it allows for finite-sample selective inference via the Lasso estimates. In this paper, we extend the theory of the knockoff procedure to tests with composite null hypotheses, which are usually more relevant to real-world problems. The main technical challenge lies in handling composite nulls in tandem with dependent features from arbitrary designs. We develop two methods for composite inference with the knockoffs, namely, shifted ordinary least-squares (S-OLS) and feature-response product perturbation (FRPP), building on new structural properties of test statistics under composite nulls. We also propose two heuristic variants of S-OLS method that outperform the celebrated Benjamini–Hochberg (BH) procedure for composite nulls, which serves as a heuristic baseline under dependent test statistics. Finally, we analyze the loss in FDR when the original knockoff procedure is naively applied on composite tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信