估算:一个估算知情交易模型概率的R包

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R Journal Pub Date : 2023-11-01 DOI:10.32614/rj-2023-044
Montasser Ghachem, Oguz Ersan
{"title":"估算:一个估算知情交易模型概率的R包","authors":"Montasser Ghachem, Oguz Ersan","doi":"10.32614/rj-2023-044","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce the R package [PINstimation](https://CRAN.R-project.org/package=PINstimation). The package is designed for fast and accurate estimation of the probability of informed trading models through the implementation of well-established estimation methods. The models covered are the original PIN model [@easley1992time; @easley1996liquidity], the multilayer PIN model [@ersan2016multilayer], the adjusted PIN model [@duarte2009why], and the volume- synchronized PIN [@Easley2011microstructure; @Easley2012Flow]. These core functionalities of the package are supplemented with utilities for data simulation, aggregation and classification tools. In addition to a detailed overview of the package functions, we provide a brief theoretical review of the main methods implemented in the package. Further, we provide examples of use of the package on trade-level data for 58 Swedish stocks, and report straightforward, comparative and intriguing findings on informed trading. These examples aim to highlight the capabilities of the package in tackling relevant research questions and illustrate the wide usage possibilities of PINstimation for both academics and practitioners.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"108 1-2","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PINstimation: An R Package for Estimating Probability of Informed Trading Models\",\"authors\":\"Montasser Ghachem, Oguz Ersan\",\"doi\":\"10.32614/rj-2023-044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce the R package [PINstimation](https://CRAN.R-project.org/package=PINstimation). The package is designed for fast and accurate estimation of the probability of informed trading models through the implementation of well-established estimation methods. The models covered are the original PIN model [@easley1992time; @easley1996liquidity], the multilayer PIN model [@ersan2016multilayer], the adjusted PIN model [@duarte2009why], and the volume- synchronized PIN [@Easley2011microstructure; @Easley2012Flow]. These core functionalities of the package are supplemented with utilities for data simulation, aggregation and classification tools. In addition to a detailed overview of the package functions, we provide a brief theoretical review of the main methods implemented in the package. Further, we provide examples of use of the package on trade-level data for 58 Swedish stocks, and report straightforward, comparative and intriguing findings on informed trading. These examples aim to highlight the capabilities of the package in tackling relevant research questions and illustrate the wide usage possibilities of PINstimation for both academics and practitioners.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"108 1-2\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-044\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-044","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是介绍R包[pinestimate](https://CRAN.R-project.org/package=PINstimation)。该软件包旨在通过实施完善的估计方法,快速准确地估计知情交易模型的概率。所涵盖的模型是原始PIN模型[@easley1992time;@easley1996liquidity],多层PIN模型[@ersan2016multilayer],调整后的PIN模型[@duarte2009why],以及量同步PIN [@ easley2011微结构;@Easley2012Flow]。包的这些核心功能还补充了用于数据模拟、聚合和分类工具的实用程序。除了对包功能的详细概述外,我们还对包中实现的主要方法进行了简要的理论回顾。此外,我们提供了58只瑞典股票的贸易级数据包的使用示例,并报告了关于知情交易的简单,比较和有趣的发现。这些例子旨在突出该软件包在解决相关研究问题方面的能力,并说明pinestimation在学术界和实践者中的广泛使用可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PINstimation: An R Package for Estimating Probability of Informed Trading Models
The purpose of this paper is to introduce the R package [PINstimation](https://CRAN.R-project.org/package=PINstimation). The package is designed for fast and accurate estimation of the probability of informed trading models through the implementation of well-established estimation methods. The models covered are the original PIN model [@easley1992time; @easley1996liquidity], the multilayer PIN model [@ersan2016multilayer], the adjusted PIN model [@duarte2009why], and the volume- synchronized PIN [@Easley2011microstructure; @Easley2012Flow]. These core functionalities of the package are supplemented with utilities for data simulation, aggregation and classification tools. In addition to a detailed overview of the package functions, we provide a brief theoretical review of the main methods implemented in the package. Further, we provide examples of use of the package on trade-level data for 58 Swedish stocks, and report straightforward, comparative and intriguing findings on informed trading. These examples aim to highlight the capabilities of the package in tackling relevant research questions and illustrate the wide usage possibilities of PINstimation for both academics and practitioners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信