Florian Jörg, Shengchao Li, Jochen Schreiner, Hardy Simgen, Rafael F. Lang
{"title":"用于XENONnT探测器低能电子后坐力校准的220Rn源的特性","authors":"Florian Jörg, Shengchao Li, Jochen Schreiner, Hardy Simgen, Rafael F. Lang","doi":"10.1088/1748-0221/18/11/p11009","DOIUrl":null,"url":null,"abstract":"Low-background liquid xenon detectors are utilized in the investigation of rare events, including dark matter and neutrinoless double beta decay. For their calibration, gaseous 220Rn can be used. After being introduced into the xenon, its progeny isotope 212Pb induces homogeneously distributed, low-energy (<30 keV) electronic recoil interactions. We report on the characterization of such a source for use in the XENONnT experiment. It consists of four commercially available 228Th sources with an activity of 55 kBq. These sources provide a high 220Rn emanation rate of about 8 kBq. We find no indication for the release of the long-lived 228Th above 1.7 mBq. Though an unexpected 222Rn emanation rate of about 3.6 mBq is observed, this source is still in line with the requirements for the XENONnT experiment.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"7 12","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a <sup>220</sup>Rn source for low-energy electronic recoil calibration of the XENONnT detector\",\"authors\":\"Florian Jörg, Shengchao Li, Jochen Schreiner, Hardy Simgen, Rafael F. Lang\",\"doi\":\"10.1088/1748-0221/18/11/p11009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-background liquid xenon detectors are utilized in the investigation of rare events, including dark matter and neutrinoless double beta decay. For their calibration, gaseous 220Rn can be used. After being introduced into the xenon, its progeny isotope 212Pb induces homogeneously distributed, low-energy (<30 keV) electronic recoil interactions. We report on the characterization of such a source for use in the XENONnT experiment. It consists of four commercially available 228Th sources with an activity of 55 kBq. These sources provide a high 220Rn emanation rate of about 8 kBq. We find no indication for the release of the long-lived 228Th above 1.7 mBq. Though an unexpected 222Rn emanation rate of about 3.6 mBq is observed, this source is still in line with the requirements for the XENONnT experiment.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"7 12\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/18/11/p11009\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/11/p11009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Characterization of a 220Rn source for low-energy electronic recoil calibration of the XENONnT detector
Low-background liquid xenon detectors are utilized in the investigation of rare events, including dark matter and neutrinoless double beta decay. For their calibration, gaseous 220Rn can be used. After being introduced into the xenon, its progeny isotope 212Pb induces homogeneously distributed, low-energy (<30 keV) electronic recoil interactions. We report on the characterization of such a source for use in the XENONnT experiment. It consists of four commercially available 228Th sources with an activity of 55 kBq. These sources provide a high 220Rn emanation rate of about 8 kBq. We find no indication for the release of the long-lived 228Th above 1.7 mBq. Though an unexpected 222Rn emanation rate of about 3.6 mBq is observed, this source is still in line with the requirements for the XENONnT experiment.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.