居里-魏斯模型中的混沌何时停止传播?

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Jonas Jalowy, Zakhar Kabluchko, Matthias Löwe, Alexander Marynych
{"title":"居里-魏斯模型中的混沌何时停止传播?","authors":"Jonas Jalowy, Zakhar Kabluchko, Matthias Löwe, Alexander Marynych","doi":"10.1214/23-ejp1039","DOIUrl":null,"url":null,"abstract":"We investigate increasing propagation of chaos for the mean-field Ising model of ferromagnetism (also known as the Curie-Weiss model) with N spins at inverse temperature β>0 and subject to an external magnetic field of strength h∈R. Using a different proof technique than in Ben Arous and Zeitouni [Ann. Inst. H. Poincaré: Probab. Statist., 35(1): 85–102, 1999] we confirm the well-known propagation of chaos phenomenon: If k=k(N)=o(N) as N→∞, then the k’th marginal distribution of the Gibbs measure converges to a product measure at β<1 or h≠0 and to a mixture of two product measures, if β>1 and h=0. More importantly, we also show that if k(N)∕N→α∈(0,1], this property is lost and we identify a non-zero limit of the total variation distance between the number of positive spins among any k-tuple and the corresponding binomial distribution.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"When does the chaos in the Curie-Weiss model stop to propagate?\",\"authors\":\"Jonas Jalowy, Zakhar Kabluchko, Matthias Löwe, Alexander Marynych\",\"doi\":\"10.1214/23-ejp1039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate increasing propagation of chaos for the mean-field Ising model of ferromagnetism (also known as the Curie-Weiss model) with N spins at inverse temperature β>0 and subject to an external magnetic field of strength h∈R. Using a different proof technique than in Ben Arous and Zeitouni [Ann. Inst. H. Poincaré: Probab. Statist., 35(1): 85–102, 1999] we confirm the well-known propagation of chaos phenomenon: If k=k(N)=o(N) as N→∞, then the k’th marginal distribution of the Gibbs measure converges to a product measure at β<1 or h≠0 and to a mixture of two product measures, if β>1 and h=0. More importantly, we also show that if k(N)∕N→α∈(0,1], this property is lost and we identify a non-zero limit of the total variation distance between the number of positive spins among any k-tuple and the corresponding binomial distribution.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp1039\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejp1039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了在逆温度β>0、外加强度h∈R的磁场作用下,具有N个自旋的铁磁平均场Ising模型(也称为居里-魏斯模型)混沌的增加传播。使用不同于Ben Arous和Zeitouni的证明技术。庞卡罗博士:可能吧。中央集权。我们证实了混沌现象的传播:当k=k(N)=o(N)为N→∞时,Gibbs测度的第k次边际分布收敛于β1和h=0处的积测度。更重要的是,我们还证明了当k(N)∕N→α∈(0,1)时,这一性质就失去了,并给出了任意k元组中正自旋数与相应二项分布之间总变异距离的一个非零极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When does the chaos in the Curie-Weiss model stop to propagate?
We investigate increasing propagation of chaos for the mean-field Ising model of ferromagnetism (also known as the Curie-Weiss model) with N spins at inverse temperature β>0 and subject to an external magnetic field of strength h∈R. Using a different proof technique than in Ben Arous and Zeitouni [Ann. Inst. H. Poincaré: Probab. Statist., 35(1): 85–102, 1999] we confirm the well-known propagation of chaos phenomenon: If k=k(N)=o(N) as N→∞, then the k’th marginal distribution of the Gibbs measure converges to a product measure at β<1 or h≠0 and to a mixture of two product measures, if β>1 and h=0. More importantly, we also show that if k(N)∕N→α∈(0,1], this property is lost and we identify a non-zero limit of the total variation distance between the number of positive spins among any k-tuple and the corresponding binomial distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信