Viktor Kosyakov, Roman Fursenko, Vladimir Chudnovskii, Sergey Minaev
{"title":"管壁对激光波导末端过冷沸腾影响的数值研究","authors":"Viktor Kosyakov, Roman Fursenko, Vladimir Chudnovskii, Sergey Minaev","doi":"10.1615/interfacphenomheattransfer.2023049631","DOIUrl":null,"url":null,"abstract":"Results of numerical simulations of the laser-induced boiling at the end of waveguide placed inside the tube are presented. The effect of tube wall on the vapor bubble evolution and characteristics of the cumulative jet forming as a result of its collapse has been studied. Particularly, it is found that while the tubes of large radii insignificantly affect the velocity of the cumulative liquid jet, in the relatively narrow tubes the jet may not form at all. Effect of the tubes of moderate radii comes down to the decrease of the jet velocity compared with the case without the tube. Possible physical explanation of such influence of tube walls is proposed. Numerical results on laser-induced boiling inside the tubes are summarized in the regime diagram in the tube radius - waveguide radius plane.","PeriodicalId":44077,"journal":{"name":"Interfacial Phenomena and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of the effect of tube wall on subcooled boiling at the end of a laser waveguide\",\"authors\":\"Viktor Kosyakov, Roman Fursenko, Vladimir Chudnovskii, Sergey Minaev\",\"doi\":\"10.1615/interfacphenomheattransfer.2023049631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results of numerical simulations of the laser-induced boiling at the end of waveguide placed inside the tube are presented. The effect of tube wall on the vapor bubble evolution and characteristics of the cumulative jet forming as a result of its collapse has been studied. Particularly, it is found that while the tubes of large radii insignificantly affect the velocity of the cumulative liquid jet, in the relatively narrow tubes the jet may not form at all. Effect of the tubes of moderate radii comes down to the decrease of the jet velocity compared with the case without the tube. Possible physical explanation of such influence of tube walls is proposed. Numerical results on laser-induced boiling inside the tubes are summarized in the regime diagram in the tube radius - waveguide radius plane.\",\"PeriodicalId\":44077,\"journal\":{\"name\":\"Interfacial Phenomena and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfacial Phenomena and Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/interfacphenomheattransfer.2023049631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfacial Phenomena and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/interfacphenomheattransfer.2023049631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Numerical study of the effect of tube wall on subcooled boiling at the end of a laser waveguide
Results of numerical simulations of the laser-induced boiling at the end of waveguide placed inside the tube are presented. The effect of tube wall on the vapor bubble evolution and characteristics of the cumulative jet forming as a result of its collapse has been studied. Particularly, it is found that while the tubes of large radii insignificantly affect the velocity of the cumulative liquid jet, in the relatively narrow tubes the jet may not form at all. Effect of the tubes of moderate radii comes down to the decrease of the jet velocity compared with the case without the tube. Possible physical explanation of such influence of tube walls is proposed. Numerical results on laser-induced boiling inside the tubes are summarized in the regime diagram in the tube radius - waveguide radius plane.
期刊介绍:
Interfacial Phenomena and Heat Transfer aims to serve as a forum to advance understanding of fundamental and applied areas on interfacial phenomena, fluid flow, and heat transfer through interdisciplinary research. The special feature of the Journal is to highlight multi-scale phenomena involved in physical and/or chemical behaviors in the context of both classical and new unsolved problems of thermal physics, fluid mechanics, and interfacial phenomena. This goal is fulfilled by publishing novel research on experimental, theoretical and computational methods, assigning priority to comprehensive works covering at least two of the above three approaches. The scope of the Journal covers interdisciplinary areas of physics of fluids, heat and mass transfer, physical chemistry and engineering in macro-, meso-, micro-, and nano-scale. As such review papers, full-length articles and short communications are sought on the following areas: intense heat and mass transfer systems; flows in channels and complex fluid systems; physics of contact line, wetting and thermocapillary flows; instabilities and flow patterns; two-phase systems behavior including films, drops, rivulets, spray, jets, and bubbles; phase change phenomena such as boiling, evaporation, condensation and solidification; multi-scaled textured, soft or heterogeneous surfaces; and gravity dependent phenomena, e.g. processes in micro- and hyper-gravity. The Journal may also consider significant contributions related to the development of innovative experimental techniques, and instrumentation demonstrating advancement of science in the focus areas of this journal.