{"title":"高温复合熔覆工艺控制熔覆层材料性能的研究","authors":"Yeong-Kwan Jo, Sang-Hu Park","doi":"10.7736/jkspe.023.073","DOIUrl":null,"url":null,"abstract":"A hybrid cladding technology was developed by combining direct energy deposition (DED) and ultrasonic nanocrystal surface modification (UNSM). This is an effective process to control the mechanical properties inside the metal-clad layer, but the scope to improve the internal properties is low. Therefore, in this study, the UNSM process was applied while heating at 300 and 600℃ to increase the effectiveness of this hybrid additive process. To validate the characteristics of this method, a study on the cross-sectional properties upon application of heating was conducted. Hybrid cladding at 300 degrees produced improvements- over a 40% larger area than the results at room temperature. At 600 degrees, the hybrid cladding improved mechanical properties over a larger area by nearly 2 times. In this study, the characteristics of the roomtemperature and the high-temperature hybrid cladding process were analyzed. The proposed method shows a high improvement effect and is a promising method to improve the internal mechanical properties of the cladded layer.","PeriodicalId":37663,"journal":{"name":"Journal of the Korean Society for Precision Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Controlling Material Properties of Cladded Layers Using High Temperature and Hybrid Cladding Process\",\"authors\":\"Yeong-Kwan Jo, Sang-Hu Park\",\"doi\":\"10.7736/jkspe.023.073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid cladding technology was developed by combining direct energy deposition (DED) and ultrasonic nanocrystal surface modification (UNSM). This is an effective process to control the mechanical properties inside the metal-clad layer, but the scope to improve the internal properties is low. Therefore, in this study, the UNSM process was applied while heating at 300 and 600℃ to increase the effectiveness of this hybrid additive process. To validate the characteristics of this method, a study on the cross-sectional properties upon application of heating was conducted. Hybrid cladding at 300 degrees produced improvements- over a 40% larger area than the results at room temperature. At 600 degrees, the hybrid cladding improved mechanical properties over a larger area by nearly 2 times. In this study, the characteristics of the roomtemperature and the high-temperature hybrid cladding process were analyzed. The proposed method shows a high improvement effect and is a promising method to improve the internal mechanical properties of the cladded layer.\",\"PeriodicalId\":37663,\"journal\":{\"name\":\"Journal of the Korean Society for Precision Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Precision Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7736/jkspe.023.073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7736/jkspe.023.073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Study on Controlling Material Properties of Cladded Layers Using High Temperature and Hybrid Cladding Process
A hybrid cladding technology was developed by combining direct energy deposition (DED) and ultrasonic nanocrystal surface modification (UNSM). This is an effective process to control the mechanical properties inside the metal-clad layer, but the scope to improve the internal properties is low. Therefore, in this study, the UNSM process was applied while heating at 300 and 600℃ to increase the effectiveness of this hybrid additive process. To validate the characteristics of this method, a study on the cross-sectional properties upon application of heating was conducted. Hybrid cladding at 300 degrees produced improvements- over a 40% larger area than the results at room temperature. At 600 degrees, the hybrid cladding improved mechanical properties over a larger area by nearly 2 times. In this study, the characteristics of the roomtemperature and the high-temperature hybrid cladding process were analyzed. The proposed method shows a high improvement effect and is a promising method to improve the internal mechanical properties of the cladded layer.
期刊介绍:
Journal of the Korean Society for Precision Engineering (JKSPE) is devoted to publishing original research articles with high ethical standard on all aspects of precision engineering and manufacturing. Specifically, the journal focuses on articles related to improving the precision of machines and manufacturing processes through implementation of creative solutions that stem from advanced research using novel experimental methods, predictive modeling techniques, and rigorous analyses based on mechanical engineering or multidisciplinary approach. The expected outcomes of the knowledge disseminated from JKSPE are enhanced reliability, better motion precision, higher measurement accuracy, and sufficient reliability of precision systems. The various topics covered by JKSPE include: Precision Manufacturing processes, Precision Measurements, Robotics and Automation / Control, Smart Manufacturing System, Design and Materials, Machine Tools, Nano/Micro Technology, Biomechanical Engineering, Additive Manufacturing System, Green Manufacturing Technology.