界面缺陷诱导KFeSO4F阴极储钾性能的提升:从低Fe-3d轨道能级到高级钾离子电池

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL
Yan Liu, Zhen-Yi Gu, Yong-Li Heng, Jin-Zhi Guo, Miao Du, Hao-Jie Liang, Jia-Lin Yang, Kai-Yang Zhang, Kai Li, Xing-Long Wu
{"title":"界面缺陷诱导KFeSO4F阴极储钾性能的提升:从低Fe-3d轨道能级到高级钾离子电池","authors":"Yan Liu, Zhen-Yi Gu, Yong-Li Heng, Jin-Zhi Guo, Miao Du, Hao-Jie Liang, Jia-Lin Yang, Kai-Yang Zhang, Kai Li, Xing-Long Wu","doi":"10.1016/j.gee.2023.10.004","DOIUrl":null,"url":null,"abstract":"KFeSO4F (KFSF) is considered a potential cathode due to the large capacity and low cost. However, the inferior electronic conductivity leads to poor electrochemical performance. Defect engineering can facilitate the electron/ion transfer by tuning electronic structure, thus providing favorable electrochemical performance. Herein, through the regulation of surface defect engineering in reduced graphene oxide (rGO), the Fe-C bonds were formed between KFSF and rGO. The Fe-C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF. Thus, the KFSF@rGO delivers a high capacity of 119.6 mAh g-1. When matched with a graphite@pitch-derived S-doped carbon anode, the full cell delivers an energy density of 250.5 Wh kg-1 and a capacity retention of 81.5% after 400 cycles. This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"23 1","pages":"0"},"PeriodicalIF":10.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface defect induced upgrade of K-storage properties in KFeSO4F cathode: from lowered Fe-3d orbital energy level to advanced potassium-ion batteries\",\"authors\":\"Yan Liu, Zhen-Yi Gu, Yong-Li Heng, Jin-Zhi Guo, Miao Du, Hao-Jie Liang, Jia-Lin Yang, Kai-Yang Zhang, Kai Li, Xing-Long Wu\",\"doi\":\"10.1016/j.gee.2023.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"KFeSO4F (KFSF) is considered a potential cathode due to the large capacity and low cost. However, the inferior electronic conductivity leads to poor electrochemical performance. Defect engineering can facilitate the electron/ion transfer by tuning electronic structure, thus providing favorable electrochemical performance. Herein, through the regulation of surface defect engineering in reduced graphene oxide (rGO), the Fe-C bonds were formed between KFSF and rGO. The Fe-C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF. Thus, the KFSF@rGO delivers a high capacity of 119.6 mAh g-1. When matched with a graphite@pitch-derived S-doped carbon anode, the full cell delivers an energy density of 250.5 Wh kg-1 and a capacity retention of 81.5% after 400 cycles. This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2023.10.004\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gee.2023.10.004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

KFeSO4F (KFSF)因其容量大、成本低而被认为是极具潜力的阴极。但由于导电性能差,导致其电化学性能较差。缺陷工程可以通过调整电子结构来促进电子/离子的转移,从而提供良好的电化学性能。本文通过对还原氧化石墨烯(rGO)表面缺陷工程的调控,在KFSF和rGO之间形成了Fe-C键。形成的Fe-C键可以调节Fe-3d轨道,促进K离子的迁移能力,提高KFSF的电子导电性。因此,KFSF@rGO提供了119.6 mAh g-1的高容量。当与graphite@pitch-derived s掺杂碳阳极匹配时,经过400次循环后,整个电池的能量密度为250.5 Wh kg-1,容量保持率为81.5%。这项工作提供了一种简单而有效的方法,通过调整缺陷位置来开发高性能阴极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interface defect induced upgrade of K-storage properties in KFeSO4F cathode: from lowered Fe-3d orbital energy level to advanced potassium-ion batteries

Interface defect induced upgrade of K-storage properties in KFeSO4F cathode: from lowered Fe-3d orbital energy level to advanced potassium-ion batteries
KFeSO4F (KFSF) is considered a potential cathode due to the large capacity and low cost. However, the inferior electronic conductivity leads to poor electrochemical performance. Defect engineering can facilitate the electron/ion transfer by tuning electronic structure, thus providing favorable electrochemical performance. Herein, through the regulation of surface defect engineering in reduced graphene oxide (rGO), the Fe-C bonds were formed between KFSF and rGO. The Fe-C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF. Thus, the KFSF@rGO delivers a high capacity of 119.6 mAh g-1. When matched with a graphite@pitch-derived S-doped carbon anode, the full cell delivers an energy density of 250.5 Wh kg-1 and a capacity retention of 81.5% after 400 cycles. This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信