基于三维建筑建模的新型冠状病毒医疗废弃物处置路径优化自动化系统

Q4 Social Sciences
{"title":"基于三维建筑建模的新型冠状病毒医疗废弃物处置路径优化自动化系统","authors":"","doi":"10.52939/ijg.v19i9.2837","DOIUrl":null,"url":null,"abstract":"Urbanization is a contributing factor to global warming, as asphalt, concrete, and other light-absorbing materials replace vegetated areas, causing an increase in Land Surface Temperature (LST) and creating Surface Urban Heat Islands (SUHI). Although thermal satellite imagery has been a powerful tool in mapping LST and SUHI spatio-temporal changes, the number of studies in Africa, including Egypt, remains limited. Thus, in this research, an automated model was developed in ArcGIS and used to map LST and SUHI and detect Urban Hot Spots (UHS) in Alexandria city, Egypt, using Landsat 8 time series (2013 to 2021). The results revealed an increase of 41.31% in urban areas and a decrease of 49.51% in agricultural areas, a change that was demonstrated by a decline in the Normalized Difference Vegetation Index (NDVI) from 0.84 in 2013 to 0.53 in 2021. Correspondingly, LST and SUHI displayed an increasing pattern, with the highest recorded values observed in 2021. Thus, this study showed the negative impact of urbanization on Alexandria city’s temperature – a city that is already facing a climate catastrophe because of the sea level rise resulting from climate change. Furthermore, the developed estimation model can be similarly useful for climate change researchers and decision makers.","PeriodicalId":38707,"journal":{"name":"International Journal of Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Route Determination Automation System for Covid-19 Medical Waste Disposal Based on 3D Building Modeling\",\"authors\":\"\",\"doi\":\"10.52939/ijg.v19i9.2837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urbanization is a contributing factor to global warming, as asphalt, concrete, and other light-absorbing materials replace vegetated areas, causing an increase in Land Surface Temperature (LST) and creating Surface Urban Heat Islands (SUHI). Although thermal satellite imagery has been a powerful tool in mapping LST and SUHI spatio-temporal changes, the number of studies in Africa, including Egypt, remains limited. Thus, in this research, an automated model was developed in ArcGIS and used to map LST and SUHI and detect Urban Hot Spots (UHS) in Alexandria city, Egypt, using Landsat 8 time series (2013 to 2021). The results revealed an increase of 41.31% in urban areas and a decrease of 49.51% in agricultural areas, a change that was demonstrated by a decline in the Normalized Difference Vegetation Index (NDVI) from 0.84 in 2013 to 0.53 in 2021. Correspondingly, LST and SUHI displayed an increasing pattern, with the highest recorded values observed in 2021. Thus, this study showed the negative impact of urbanization on Alexandria city’s temperature – a city that is already facing a climate catastrophe because of the sea level rise resulting from climate change. Furthermore, the developed estimation model can be similarly useful for climate change researchers and decision makers.\",\"PeriodicalId\":38707,\"journal\":{\"name\":\"International Journal of Geoinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52939/ijg.v19i9.2837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52939/ijg.v19i9.2837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

城市化是全球变暖的一个促成因素,因为沥青、混凝土和其他吸光材料取代了植被区域,导致陆地表面温度(LST)升高,并产生地表城市热岛(SUHI)。尽管热卫星图像已成为绘制地表温度和SUHI时空变化的有力工具,但在包括埃及在内的非洲开展的研究数量仍然有限。因此,在本研究中,在ArcGIS中开发了一个自动化模型,并使用Landsat 8时间序列(2013 - 2021)用于绘制埃及亚历山大市的LST和SUHI并检测城市热点(UHS)。结果表明,城市地区植被面积增加41.31%,农业区减少49.51%,归一化植被指数(NDVI)从2013年的0.84下降到2021年的0.53。相应的,LST和SUHI呈上升趋势,在2021年达到最高值。因此,这项研究显示了城市化对亚历山大市温度的负面影响——由于气候变化导致的海平面上升,这座城市已经面临着气候灾难。此外,开发的估算模型对气候变化研究人员和决策者也同样有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Route Determination Automation System for Covid-19 Medical Waste Disposal Based on 3D Building Modeling
Urbanization is a contributing factor to global warming, as asphalt, concrete, and other light-absorbing materials replace vegetated areas, causing an increase in Land Surface Temperature (LST) and creating Surface Urban Heat Islands (SUHI). Although thermal satellite imagery has been a powerful tool in mapping LST and SUHI spatio-temporal changes, the number of studies in Africa, including Egypt, remains limited. Thus, in this research, an automated model was developed in ArcGIS and used to map LST and SUHI and detect Urban Hot Spots (UHS) in Alexandria city, Egypt, using Landsat 8 time series (2013 to 2021). The results revealed an increase of 41.31% in urban areas and a decrease of 49.51% in agricultural areas, a change that was demonstrated by a decline in the Normalized Difference Vegetation Index (NDVI) from 0.84 in 2013 to 0.53 in 2021. Correspondingly, LST and SUHI displayed an increasing pattern, with the highest recorded values observed in 2021. Thus, this study showed the negative impact of urbanization on Alexandria city’s temperature – a city that is already facing a climate catastrophe because of the sea level rise resulting from climate change. Furthermore, the developed estimation model can be similarly useful for climate change researchers and decision makers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Geoinformatics
International Journal of Geoinformatics Social Sciences-Geography, Planning and Development
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信