矩阵值勋伯格问题及其应用

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Pavel Ievlev, Svyatoslav Novikov
{"title":"矩阵值勋伯格问题及其应用","authors":"Pavel Ievlev, Svyatoslav Novikov","doi":"10.1214/23-ecp562","DOIUrl":null,"url":null,"abstract":"In this paper we present a criterion for positive definiteness of the matrix-valued function f(t):=exp(−|t|α[B++B−sign(t)]), where α∈(0,2] and B± are real symmetric and antisymmetric d×d matrices. We also find a criterion for positive definiteness of its multidimensional generalization f(t):=exp(−∫Sd−1|t⊤s|α[B++B−sign(t⊤s)]dΛ(s)) where Λ is a finite measure on the unit sphere Sd−1⊂Rd under a more restrictive assumption that B± commute and are normal. The associated stationary Gaussian random field may be viewed as as a generalization of the univariate fractional Ornstein-Uhlenbeck process. This generalization turns out to be particularly useful for the asymptotic analysis of Rd-valued Gaussian random fields. Another possible application of these findings may concern variogram modelling and general stationary time series analysis.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A matrix-valued Schoenberg’s problem and its applications\",\"authors\":\"Pavel Ievlev, Svyatoslav Novikov\",\"doi\":\"10.1214/23-ecp562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a criterion for positive definiteness of the matrix-valued function f(t):=exp(−|t|α[B++B−sign(t)]), where α∈(0,2] and B± are real symmetric and antisymmetric d×d matrices. We also find a criterion for positive definiteness of its multidimensional generalization f(t):=exp(−∫Sd−1|t⊤s|α[B++B−sign(t⊤s)]dΛ(s)) where Λ is a finite measure on the unit sphere Sd−1⊂Rd under a more restrictive assumption that B± commute and are normal. The associated stationary Gaussian random field may be viewed as as a generalization of the univariate fractional Ornstein-Uhlenbeck process. This generalization turns out to be particularly useful for the asymptotic analysis of Rd-valued Gaussian random fields. Another possible application of these findings may concern variogram modelling and general stationary time series analysis.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp562\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ecp562","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了矩阵值函数f(t)的一个正定准则:=exp(−|t|α[B++B−sign(t)]),其中α∈(0,2)和B±是实对称和反对称d×d矩阵。我们还找到了它的多维推广f(t)的正定性判据:=exp(-∫Sd−1|t∧s|α[B++B−sign(t∧s)]dΛ(s)),其中Λ是单位球Sd−1∧Rd上的一个有限测度,在更严格的假设下,B±可交换并且是正态的。相关的平稳高斯随机场可以看作是单变量分数阶Ornstein-Uhlenbeck过程的推广。这种推广被证明对rd值高斯随机场的渐近分析特别有用。这些发现的另一个可能的应用可能涉及变异函数模型和一般平稳时间序列分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A matrix-valued Schoenberg’s problem and its applications
In this paper we present a criterion for positive definiteness of the matrix-valued function f(t):=exp(−|t|α[B++B−sign(t)]), where α∈(0,2] and B± are real symmetric and antisymmetric d×d matrices. We also find a criterion for positive definiteness of its multidimensional generalization f(t):=exp(−∫Sd−1|t⊤s|α[B++B−sign(t⊤s)]dΛ(s)) where Λ is a finite measure on the unit sphere Sd−1⊂Rd under a more restrictive assumption that B± commute and are normal. The associated stationary Gaussian random field may be viewed as as a generalization of the univariate fractional Ornstein-Uhlenbeck process. This generalization turns out to be particularly useful for the asymptotic analysis of Rd-valued Gaussian random fields. Another possible application of these findings may concern variogram modelling and general stationary time series analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信