关于随机Volterra方程弱解的存在性

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
David J. Prömel, David Scheffels
{"title":"关于随机Volterra方程弱解的存在性","authors":"David J. Prömel, David Scheffels","doi":"10.1214/23-ecp554","DOIUrl":null,"url":null,"abstract":"The existence of weak solutions is established for stochastic Volterra equations with time-inhomogeneous coefficients allowing for general kernels in the drift and convolutional or bounded kernels in the diffusion term. The presented approach is based on a newly formulated local martingale problem associated to stochastic Volterra equations.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":"20 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the existence of weak solutions to stochastic Volterra equations\",\"authors\":\"David J. Prömel, David Scheffels\",\"doi\":\"10.1214/23-ecp554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of weak solutions is established for stochastic Volterra equations with time-inhomogeneous coefficients allowing for general kernels in the drift and convolutional or bounded kernels in the diffusion term. The presented approach is based on a newly formulated local martingale problem associated to stochastic Volterra equations.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp554\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ecp554","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

建立了具有时间非齐次系数的随机Volterra方程弱解的存在性,该方程在漂移项中允许一般核,在扩散项中允许卷积核或有界核。本文提出的方法是基于一个新的与随机Volterra方程相关的局部鞅问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of weak solutions to stochastic Volterra equations
The existence of weak solutions is established for stochastic Volterra equations with time-inhomogeneous coefficients allowing for general kernels in the drift and convolutional or bounded kernels in the diffusion term. The presented approach is based on a newly formulated local martingale problem associated to stochastic Volterra equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信