{"title":"基于层次矩阵的可扩展物理最大似然估计","authors":"Yian Chen, Mihai Anitescu","doi":"10.1137/21m1458880","DOIUrl":null,"url":null,"abstract":"Physics-based covariance models provide a systematic way to construct covariance models that are consistent with the underlying physical laws in Gaussian process analysis. The unknown parameters in the covariance models can be estimated using maximum likelihood estimation, but direct construction of the covariance matrix and classical strategies of computing with it require physical model runs, storage complexity, and computational complexity. To address such challenges, we propose to approximate the discretized covariance function using hierarchical matrices. By utilizing randomized range sketching for individual off-diagonal blocks, the construction process of the hierarchical covariance approximation requires physical model applications and the maximum likelihood computations require effort per iteration. We propose a new approach to compute exactly the trace of products of hierarchical matrices which results in the expected Fisher information matrix being computable in as well. The construction is totally matrix-free and the derivatives of the covariance matrix can then be approximated in the same hierarchical structure by differentiating the whole process. Numerical results are provided to demonstrate the effectiveness, accuracy, and efficiency of the proposed method for parameter estimations and uncertainty quantification.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"10 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Physics-Based Maximum Likelihood Estimation Using Hierarchical Matrices\",\"authors\":\"Yian Chen, Mihai Anitescu\",\"doi\":\"10.1137/21m1458880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physics-based covariance models provide a systematic way to construct covariance models that are consistent with the underlying physical laws in Gaussian process analysis. The unknown parameters in the covariance models can be estimated using maximum likelihood estimation, but direct construction of the covariance matrix and classical strategies of computing with it require physical model runs, storage complexity, and computational complexity. To address such challenges, we propose to approximate the discretized covariance function using hierarchical matrices. By utilizing randomized range sketching for individual off-diagonal blocks, the construction process of the hierarchical covariance approximation requires physical model applications and the maximum likelihood computations require effort per iteration. We propose a new approach to compute exactly the trace of products of hierarchical matrices which results in the expected Fisher information matrix being computable in as well. The construction is totally matrix-free and the derivatives of the covariance matrix can then be approximated in the same hierarchical structure by differentiating the whole process. Numerical results are provided to demonstrate the effectiveness, accuracy, and efficiency of the proposed method for parameter estimations and uncertainty quantification.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1458880\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1458880","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Scalable Physics-Based Maximum Likelihood Estimation Using Hierarchical Matrices
Physics-based covariance models provide a systematic way to construct covariance models that are consistent with the underlying physical laws in Gaussian process analysis. The unknown parameters in the covariance models can be estimated using maximum likelihood estimation, but direct construction of the covariance matrix and classical strategies of computing with it require physical model runs, storage complexity, and computational complexity. To address such challenges, we propose to approximate the discretized covariance function using hierarchical matrices. By utilizing randomized range sketching for individual off-diagonal blocks, the construction process of the hierarchical covariance approximation requires physical model applications and the maximum likelihood computations require effort per iteration. We propose a new approach to compute exactly the trace of products of hierarchical matrices which results in the expected Fisher information matrix being computable in as well. The construction is totally matrix-free and the derivatives of the covariance matrix can then be approximated in the same hierarchical structure by differentiating the whole process. Numerical results are provided to demonstrate the effectiveness, accuracy, and efficiency of the proposed method for parameter estimations and uncertainty quantification.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.