Olav Møyner, Atgeirr F. Rasmussen, Øystein Klemetsdal, Halvor M. Nilsen, Arthur Moncorgé, Knut-Andreas Lie
{"title":"基于非线性域分解预处理的地下流鲁棒高效场尺度模拟","authors":"Olav Møyner, Atgeirr F. Rasmussen, Øystein Klemetsdal, Halvor M. Nilsen, Arthur Moncorgé, Knut-Andreas Lie","doi":"10.1007/s10596-023-10215-4","DOIUrl":null,"url":null,"abstract":"Abstract We discuss a nonlinear domain-decomposition preconditioning method for fully implicit simulations of multicomponent porous media flow based on the additive Schwarz preconditioned exact Newton method (ASPEN). The method efficiently accelerates nonlinear convergence by resolving unbalanced nonlinearities in a local stage and long-range interactions in a global stage. ASPEN can improve robustness and significantly reduce the number of global iterations compared with standard Newton, but extra work introduced in the local steps makes each global iteration more expensive. We discuss implementation aspects for the local and global stages. We show how the global-stage Jacobian can be transformed to the same form as the fully implicit system, so that one can use standard linear preconditioners and solvers. We compare the computational performance of ASPEN to standard Newton on a series of test cases, ranging from conceptual cases with simplified geometry or flow physics to cases representative of real assets. Our overall conclusion is that ASPEN is outperformed by Newton when this method works well and converges in a few iterations. On the other hand, ASPEN avoids time-step cuts and has significantly lower runtimes in time steps where Newton struggles. A good approach to computational speedup is therefore to adaptively switch between Newton and ASPEN throughout a simulation. A few examples of switching strategies are outlined.","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"1 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear domain-decomposition preconditioning for robust and efficient field-scale simulation of subsurface flow\",\"authors\":\"Olav Møyner, Atgeirr F. Rasmussen, Øystein Klemetsdal, Halvor M. Nilsen, Arthur Moncorgé, Knut-Andreas Lie\",\"doi\":\"10.1007/s10596-023-10215-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We discuss a nonlinear domain-decomposition preconditioning method for fully implicit simulations of multicomponent porous media flow based on the additive Schwarz preconditioned exact Newton method (ASPEN). The method efficiently accelerates nonlinear convergence by resolving unbalanced nonlinearities in a local stage and long-range interactions in a global stage. ASPEN can improve robustness and significantly reduce the number of global iterations compared with standard Newton, but extra work introduced in the local steps makes each global iteration more expensive. We discuss implementation aspects for the local and global stages. We show how the global-stage Jacobian can be transformed to the same form as the fully implicit system, so that one can use standard linear preconditioners and solvers. We compare the computational performance of ASPEN to standard Newton on a series of test cases, ranging from conceptual cases with simplified geometry or flow physics to cases representative of real assets. Our overall conclusion is that ASPEN is outperformed by Newton when this method works well and converges in a few iterations. On the other hand, ASPEN avoids time-step cuts and has significantly lower runtimes in time steps where Newton struggles. A good approach to computational speedup is therefore to adaptively switch between Newton and ASPEN throughout a simulation. A few examples of switching strategies are outlined.\",\"PeriodicalId\":10662,\"journal\":{\"name\":\"Computational Geosciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10596-023-10215-4\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10596-023-10215-4","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Nonlinear domain-decomposition preconditioning for robust and efficient field-scale simulation of subsurface flow
Abstract We discuss a nonlinear domain-decomposition preconditioning method for fully implicit simulations of multicomponent porous media flow based on the additive Schwarz preconditioned exact Newton method (ASPEN). The method efficiently accelerates nonlinear convergence by resolving unbalanced nonlinearities in a local stage and long-range interactions in a global stage. ASPEN can improve robustness and significantly reduce the number of global iterations compared with standard Newton, but extra work introduced in the local steps makes each global iteration more expensive. We discuss implementation aspects for the local and global stages. We show how the global-stage Jacobian can be transformed to the same form as the fully implicit system, so that one can use standard linear preconditioners and solvers. We compare the computational performance of ASPEN to standard Newton on a series of test cases, ranging from conceptual cases with simplified geometry or flow physics to cases representative of real assets. Our overall conclusion is that ASPEN is outperformed by Newton when this method works well and converges in a few iterations. On the other hand, ASPEN avoids time-step cuts and has significantly lower runtimes in time steps where Newton struggles. A good approach to computational speedup is therefore to adaptively switch between Newton and ASPEN throughout a simulation. A few examples of switching strategies are outlined.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.