{"title":"纺织材料的输送性能和透气性","authors":"Snezana Stankovic","doi":"10.2298/hemind230921022s","DOIUrl":null,"url":null,"abstract":"Heat and mass transfer through textile fabrics play a crucial role in achieving optimal thermal comfort perception by a person. The governing properties of textile fabrics by which they influence heat and mass transfer from the human skin to the environment are thermal transport capacity, water vapor permeability, and air permeability. The transfer of liquid moisture through textiles is important for thermal comfort during frequent changes in physical activity or climate. Despite numerous studies on the transport properties of textile materials over the past years, investigation in this subject area is still needed. This special issue includes five articles that offer valuable information on the subject. Both commercial and specially designed textile structures were investigated within the presented studies with the ambitious goal of providing a new understanding of their transport properties. Within the first four papers presented, certain aspects of heat and mass transfer through textile materials were analyzed at the three scale levels: microscopic (fiber type), mesoscopic (yarn geometry and fineness), and macroscopic (fabric porosity) levels. The fifth article dealt with the influence of the seam type and the sewing thread fineness on the transport properties of the seamed structure.","PeriodicalId":12913,"journal":{"name":"Hemijska Industrija","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport properties and permeability of textile materials\",\"authors\":\"Snezana Stankovic\",\"doi\":\"10.2298/hemind230921022s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat and mass transfer through textile fabrics play a crucial role in achieving optimal thermal comfort perception by a person. The governing properties of textile fabrics by which they influence heat and mass transfer from the human skin to the environment are thermal transport capacity, water vapor permeability, and air permeability. The transfer of liquid moisture through textiles is important for thermal comfort during frequent changes in physical activity or climate. Despite numerous studies on the transport properties of textile materials over the past years, investigation in this subject area is still needed. This special issue includes five articles that offer valuable information on the subject. Both commercial and specially designed textile structures were investigated within the presented studies with the ambitious goal of providing a new understanding of their transport properties. Within the first four papers presented, certain aspects of heat and mass transfer through textile materials were analyzed at the three scale levels: microscopic (fiber type), mesoscopic (yarn geometry and fineness), and macroscopic (fabric porosity) levels. The fifth article dealt with the influence of the seam type and the sewing thread fineness on the transport properties of the seamed structure.\",\"PeriodicalId\":12913,\"journal\":{\"name\":\"Hemijska Industrija\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hemijska Industrija\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/hemind230921022s\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemijska Industrija","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/hemind230921022s","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Transport properties and permeability of textile materials
Heat and mass transfer through textile fabrics play a crucial role in achieving optimal thermal comfort perception by a person. The governing properties of textile fabrics by which they influence heat and mass transfer from the human skin to the environment are thermal transport capacity, water vapor permeability, and air permeability. The transfer of liquid moisture through textiles is important for thermal comfort during frequent changes in physical activity or climate. Despite numerous studies on the transport properties of textile materials over the past years, investigation in this subject area is still needed. This special issue includes five articles that offer valuable information on the subject. Both commercial and specially designed textile structures were investigated within the presented studies with the ambitious goal of providing a new understanding of their transport properties. Within the first four papers presented, certain aspects of heat and mass transfer through textile materials were analyzed at the three scale levels: microscopic (fiber type), mesoscopic (yarn geometry and fineness), and macroscopic (fabric porosity) levels. The fifth article dealt with the influence of the seam type and the sewing thread fineness on the transport properties of the seamed structure.
期刊介绍:
The Journal Hemijska industrija (abbreviation Hem. Ind.) is publishing papers in the field of Chemical Engineering (Transport phenomena; Process Modeling, Simulation and Optimization; Thermodynamics; Separation Processes; Reactor Engineering; Electrochemical Engineering; Petrochemical Engineering), Biochemical Engineering (Bioreactors; Protein Engineering; Kinetics of Bioprocesses), Engineering of Materials (Polymers; Metal materials; Non-metal materials; Biomaterials), Environmental Engineeringand Applied Chemistry. The journal is published bimonthly by the Association of Chemical Engineers of Serbia (a member of EFCE - European Federation of Chemical Engineering). In addition to professional articles of importance to industry, scientific research papers are published, not only from our country but from all over the world. It also contains topics such as business news, science and technology news, information on new apparatus and equipment, and articles on environmental protection.