带挫折的离散时间Kuramoto模型的同步问题

IF 1 3区 数学 Q1 MATHEMATICS
Tingting Zhu
{"title":"带挫折的离散时间Kuramoto模型的同步问题","authors":"Tingting Zhu","doi":"10.3934/cpaa.2023109","DOIUrl":null,"url":null,"abstract":"In this paper, we study the emergent discrete-time dynamics of the Kuramoto model with frustration. For the discrete identical Kuramoto model with frustration, we present the exponential synchronization estimate for some admissible classes of initial configuration confined in a half circle. For the nonidentical oscillators, we exploit the second-order lifting of the original Kuramoto model with frustration and study the emergent behaviors of the corresponding discrete augmented model. More precisely, under a sufficient framework in terms of large coupling strength and small step size, we derive that the initial configuration distributed in a small set of a quarter circle will converge to frequency synchronization.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"36 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the synchronization of discrete-time Kuramoto model with frustration\",\"authors\":\"Tingting Zhu\",\"doi\":\"10.3934/cpaa.2023109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the emergent discrete-time dynamics of the Kuramoto model with frustration. For the discrete identical Kuramoto model with frustration, we present the exponential synchronization estimate for some admissible classes of initial configuration confined in a half circle. For the nonidentical oscillators, we exploit the second-order lifting of the original Kuramoto model with frustration and study the emergent behaviors of the corresponding discrete augmented model. More precisely, under a sufficient framework in terms of large coupling strength and small step size, we derive that the initial configuration distributed in a small set of a quarter circle will converge to frequency synchronization.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023109\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2023109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了带挫折的Kuramoto模型的紧急离散动力学问题。对于具有挫折的离散相同Kuramoto模型,给出了限制在半圆内的若干可容许的初始构型类的指数同步估计。对于非同振子,利用原Kuramoto模型的二阶提升,研究了相应离散增广模型的涌现行为。更确切地说,在耦合强度大、步长小的充分框架下,我们推导出分布在四分之一圆小集合中的初始构型收敛于频率同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the synchronization of discrete-time Kuramoto model with frustration
In this paper, we study the emergent discrete-time dynamics of the Kuramoto model with frustration. For the discrete identical Kuramoto model with frustration, we present the exponential synchronization estimate for some admissible classes of initial configuration confined in a half circle. For the nonidentical oscillators, we exploit the second-order lifting of the original Kuramoto model with frustration and study the emergent behaviors of the corresponding discrete augmented model. More precisely, under a sufficient framework in terms of large coupling strength and small step size, we derive that the initial configuration distributed in a small set of a quarter circle will converge to frequency synchronization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信