{"title":"$ (h_ {1}, h_{2})- $凸函数的一些新的分数积分不等式","authors":"Xiaoyue Han, Run Xu","doi":"10.3934/mfc.2023040","DOIUrl":null,"url":null,"abstract":"In this paper, some Hermite-Hadamard integral inequalities and Hermite-Hadamard-Fejér integral inequalities involving Atangana-Baleanu fractional integral operators via $ (h_ {1}, h_ {2})- $convex functions and $ (h_ {1}, h_ {2})- $concave functions are established. Then, according to an integral equation with Atangana-Baleanu fractional integral operators, some Hermite-Hadamard integral inequalities for second order differentiable convex maps are given.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"109 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some new fractional integral inequalities for $ (h_ {1}, h_ {2})- $convex functions\",\"authors\":\"Xiaoyue Han, Run Xu\",\"doi\":\"10.3934/mfc.2023040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, some Hermite-Hadamard integral inequalities and Hermite-Hadamard-Fejér integral inequalities involving Atangana-Baleanu fractional integral operators via $ (h_ {1}, h_ {2})- $convex functions and $ (h_ {1}, h_ {2})- $concave functions are established. Then, according to an integral equation with Atangana-Baleanu fractional integral operators, some Hermite-Hadamard integral inequalities for second order differentiable convex maps are given.\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2023040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2023040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Some new fractional integral inequalities for $ (h_ {1}, h_ {2})- $convex functions
In this paper, some Hermite-Hadamard integral inequalities and Hermite-Hadamard-Fejér integral inequalities involving Atangana-Baleanu fractional integral operators via $ (h_ {1}, h_ {2})- $convex functions and $ (h_ {1}, h_ {2})- $concave functions are established. Then, according to an integral equation with Atangana-Baleanu fractional integral operators, some Hermite-Hadamard integral inequalities for second order differentiable convex maps are given.