{"title":"纳米天线系统:改变无线通信和生物医学应用","authors":"Segun Akinola, Leelakrishna Reddy","doi":"10.3934/bioeng.2023019","DOIUrl":null,"url":null,"abstract":"<abstract> <p>This article provides an overview of nanoscale antenna systems in wireless communications and emerging biomedical applications. The research examines the importance of nanoscale antennas and the significance of nanotechnology in antenna layout. It delves into numerous layout concerns along with challenges of miniaturization, frequency selection and trade-offs between size, bandwidth, performance and radiation properties. The paper also explores the role of nanomaterials in antenna packages, specializing in their properties and overall performance-improving properties. It explores synthetic methods and techniques for incorporating nanomaterials into antenna designs, opening the way for new designs and improved performance. In the field of wireless communication, the article includes miniaturized antennas for wearable devices, Internet of Things (IoT) applications, millimeter wave, terahertz communication systems and it also explores antenna designs for compact wireless devices with constrained form factors overcoming challenges due to size limitations. In the biomedical field, antennas integrated into implantable medical devices and biosensing platforms are explored. The article examines the use and fabrication of biocompatible materials for biomedical antennas by considering their applicability in biomedical environments. Performance analysis and characterization techniques for nanoscale antennas are presented, including calibration methods, radiation sample analysis, gain, efficiency, impedance matching and analysis of performance parameters in various typical application scenarios. It helps to optimize antenna configuration for various cases. The article concludes with a discussion of key findings and contributions to the study. It highlights future directions and potential developments in nanoscale antenna systems, including power efficiency and energy collection, reliability and robustness in active areas and integration with wireless communication systems and networking. Finally, this article presents treasured insights into the design, fabric packages and research of nanoscale antenna systems. It gives a roadmap for future studies and improvement, focusing on the transformative capability of nanoscale antennas in Wi-Fi communications and biomedical applications.</p> </abstract>","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"63 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale antenna systems: Transforming wireless communications and biomedical applications\",\"authors\":\"Segun Akinola, Leelakrishna Reddy\",\"doi\":\"10.3934/bioeng.2023019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>This article provides an overview of nanoscale antenna systems in wireless communications and emerging biomedical applications. The research examines the importance of nanoscale antennas and the significance of nanotechnology in antenna layout. It delves into numerous layout concerns along with challenges of miniaturization, frequency selection and trade-offs between size, bandwidth, performance and radiation properties. The paper also explores the role of nanomaterials in antenna packages, specializing in their properties and overall performance-improving properties. It explores synthetic methods and techniques for incorporating nanomaterials into antenna designs, opening the way for new designs and improved performance. In the field of wireless communication, the article includes miniaturized antennas for wearable devices, Internet of Things (IoT) applications, millimeter wave, terahertz communication systems and it also explores antenna designs for compact wireless devices with constrained form factors overcoming challenges due to size limitations. In the biomedical field, antennas integrated into implantable medical devices and biosensing platforms are explored. The article examines the use and fabrication of biocompatible materials for biomedical antennas by considering their applicability in biomedical environments. Performance analysis and characterization techniques for nanoscale antennas are presented, including calibration methods, radiation sample analysis, gain, efficiency, impedance matching and analysis of performance parameters in various typical application scenarios. It helps to optimize antenna configuration for various cases. The article concludes with a discussion of key findings and contributions to the study. It highlights future directions and potential developments in nanoscale antenna systems, including power efficiency and energy collection, reliability and robustness in active areas and integration with wireless communication systems and networking. Finally, this article presents treasured insights into the design, fabric packages and research of nanoscale antenna systems. It gives a roadmap for future studies and improvement, focusing on the transformative capability of nanoscale antennas in Wi-Fi communications and biomedical applications.</p> </abstract>\",\"PeriodicalId\":45029,\"journal\":{\"name\":\"AIMS Bioengineering\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/bioeng.2023019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2023019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Nanoscale antenna systems: Transforming wireless communications and biomedical applications
This article provides an overview of nanoscale antenna systems in wireless communications and emerging biomedical applications. The research examines the importance of nanoscale antennas and the significance of nanotechnology in antenna layout. It delves into numerous layout concerns along with challenges of miniaturization, frequency selection and trade-offs between size, bandwidth, performance and radiation properties. The paper also explores the role of nanomaterials in antenna packages, specializing in their properties and overall performance-improving properties. It explores synthetic methods and techniques for incorporating nanomaterials into antenna designs, opening the way for new designs and improved performance. In the field of wireless communication, the article includes miniaturized antennas for wearable devices, Internet of Things (IoT) applications, millimeter wave, terahertz communication systems and it also explores antenna designs for compact wireless devices with constrained form factors overcoming challenges due to size limitations. In the biomedical field, antennas integrated into implantable medical devices and biosensing platforms are explored. The article examines the use and fabrication of biocompatible materials for biomedical antennas by considering their applicability in biomedical environments. Performance analysis and characterization techniques for nanoscale antennas are presented, including calibration methods, radiation sample analysis, gain, efficiency, impedance matching and analysis of performance parameters in various typical application scenarios. It helps to optimize antenna configuration for various cases. The article concludes with a discussion of key findings and contributions to the study. It highlights future directions and potential developments in nanoscale antenna systems, including power efficiency and energy collection, reliability and robustness in active areas and integration with wireless communication systems and networking. Finally, this article presents treasured insights into the design, fabric packages and research of nanoscale antenna systems. It gives a roadmap for future studies and improvement, focusing on the transformative capability of nanoscale antennas in Wi-Fi communications and biomedical applications.