椭圆运动的规范处理

IF 0.5 Q3 MATHEMATICS
Ola A. Jarab’ah
{"title":"椭圆运动的规范处理","authors":"Ola A. Jarab’ah","doi":"10.4236/apm.2023.139041","DOIUrl":null,"url":null,"abstract":"The constrained motion of a particle on an elliptical path is studied using Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics through Euler Lagrange equation using non-natural Lagrangian. We calculate the generalized momentum pθ and we find that this quantity is not conserved and the conjugate θ coordinate is not a cyclic coordinate.","PeriodicalId":43512,"journal":{"name":"Advances in Pure and Applied Mathematics","volume":"278 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical Treatment of Elliptical Motion\",\"authors\":\"Ola A. Jarab’ah\",\"doi\":\"10.4236/apm.2023.139041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The constrained motion of a particle on an elliptical path is studied using Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics through Euler Lagrange equation using non-natural Lagrangian. We calculate the generalized momentum pθ and we find that this quantity is not conserved and the conjugate θ coordinate is not a cyclic coordinate.\",\"PeriodicalId\":43512,\"journal\":{\"name\":\"Advances in Pure and Applied Mathematics\",\"volume\":\"278 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/apm.2023.139041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/apm.2023.139041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过泊松括号用哈密顿力学和非自然拉格朗日欧拉拉格朗日方程用拉格朗日力学分别研究了粒子在椭圆路径上的约束运动。我们计算广义动量pθ我们发现这个量不守恒共轭θ坐标也不是循环坐标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical Treatment of Elliptical Motion
The constrained motion of a particle on an elliptical path is studied using Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics through Euler Lagrange equation using non-natural Lagrangian. We calculate the generalized momentum pθ and we find that this quantity is not conserved and the conjugate θ coordinate is not a cyclic coordinate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信