并行混合网络:量子和经典神经网络之间的相互作用

IF 2.2 Q3 COMPUTER SCIENCE, CYBERNETICS
Mohammad Kordzanganeh, Daria Kosichkina, Alexey Melnikov
{"title":"并行混合网络:量子和经典神经网络之间的相互作用","authors":"Mohammad Kordzanganeh, Daria Kosichkina, Alexey Melnikov","doi":"10.34133/icomputing.0028","DOIUrl":null,"url":null,"abstract":"The use of quantum neural networks for machine learning is a paradigm that has recently attracted considerable interest. Under certain conditions, these models approximate the distributions of their datasets using truncated Fourier series. Owing to the trigonometric nature of this fit, angle-embedded quantum neural networks may have difficulty fitting nonharmonic features in a given dataset. Moreover, the interpretability of hybrid neural networks remains a challenge. In this study, we introduce an interpretable class of hybrid quantum neural networks that pass the inputs of the dataset in parallel to (a) a classical multi-layered perceptron and (b) a variational quantum circuit, after which the 2 outputs are linearly combined. The quantum neural network creates a smooth sinusoidal foundation based on the training set, and the classical perceptrons fill the nonharmonic gaps in the landscape. We demonstrate this claim using 2 synthetic datasets sampled from periodic distributions with added protrusions as noise. The training results indicate that parallel hybrid network architecture can improve solution optimality on periodic datasets with additional noise.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"56 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parallel Hybrid Networks: an interplay between quantum and classical neural networks\",\"authors\":\"Mohammad Kordzanganeh, Daria Kosichkina, Alexey Melnikov\",\"doi\":\"10.34133/icomputing.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of quantum neural networks for machine learning is a paradigm that has recently attracted considerable interest. Under certain conditions, these models approximate the distributions of their datasets using truncated Fourier series. Owing to the trigonometric nature of this fit, angle-embedded quantum neural networks may have difficulty fitting nonharmonic features in a given dataset. Moreover, the interpretability of hybrid neural networks remains a challenge. In this study, we introduce an interpretable class of hybrid quantum neural networks that pass the inputs of the dataset in parallel to (a) a classical multi-layered perceptron and (b) a variational quantum circuit, after which the 2 outputs are linearly combined. The quantum neural network creates a smooth sinusoidal foundation based on the training set, and the classical perceptrons fill the nonharmonic gaps in the landscape. We demonstrate this claim using 2 synthetic datasets sampled from periodic distributions with added protrusions as noise. The training results indicate that parallel hybrid network architecture can improve solution optimality on periodic datasets with additional noise.\",\"PeriodicalId\":45291,\"journal\":{\"name\":\"International Journal of Intelligent Computing and Cybernetics\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Computing and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/icomputing.0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/icomputing.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 9

摘要

在机器学习中使用量子神经网络是最近引起相当大兴趣的一个范例。在某些条件下,这些模型使用截断傅立叶级数近似其数据集的分布。由于这种拟合的三角性质,角度嵌入的量子神经网络可能难以拟合给定数据集中的非调和特征。此外,混合神经网络的可解释性仍然是一个挑战。在本研究中,我们引入了一类可解释的混合量子神经网络,它将数据集的输入并行传递给(a)经典多层感知器和(b)变分量子电路,然后将两个输出线性组合。量子神经网络在训练集的基础上创建平滑的正弦基础,经典感知器填补了景观中的非谐波空白。我们使用从周期分布中采样的2个合成数据集来证明这一说法,这些数据集带有添加的突起作为噪声。训练结果表明,并行混合网络结构可以提高具有附加噪声的周期性数据集的解的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Hybrid Networks: an interplay between quantum and classical neural networks
The use of quantum neural networks for machine learning is a paradigm that has recently attracted considerable interest. Under certain conditions, these models approximate the distributions of their datasets using truncated Fourier series. Owing to the trigonometric nature of this fit, angle-embedded quantum neural networks may have difficulty fitting nonharmonic features in a given dataset. Moreover, the interpretability of hybrid neural networks remains a challenge. In this study, we introduce an interpretable class of hybrid quantum neural networks that pass the inputs of the dataset in parallel to (a) a classical multi-layered perceptron and (b) a variational quantum circuit, after which the 2 outputs are linearly combined. The quantum neural network creates a smooth sinusoidal foundation based on the training set, and the classical perceptrons fill the nonharmonic gaps in the landscape. We demonstrate this claim using 2 synthetic datasets sampled from periodic distributions with added protrusions as noise. The training results indicate that parallel hybrid network architecture can improve solution optimality on periodic datasets with additional noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
4.70%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信