2型糖尿病与胰高血糖素样肽-1受体的相关性研究

Nabaa Kamal Alshafei, Intisar Hassan Saeed, Mona Abdelrahman Mohamed Khaier
{"title":"2型糖尿病与胰高血糖素样肽-1受体的相关性研究","authors":"Nabaa Kamal Alshafei, Intisar Hassan Saeed, Mona Abdelrahman Mohamed Khaier","doi":"10.4236/cmb.2023.133004","DOIUrl":null,"url":null,"abstract":"Aim: This study aimed to investigate the effect of non-synonymous SNPs (nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein function and structure using different computational software. Introduction: The GLP1R gene provides the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes. The protein is an important drug target for the treatment of type-2 diabetes and stroke. Material and Methods: Different nsSNPs and protein-related sequences were obtained from NCBI and ExPASY database. Gene associations and interactions were predicted using GeneMANIA software. Deleterious and damaging effects of nsSNPs were analyzed using SIFT, Provean, and Polyphen-2. The association of the nsSNPs with the disease was predicted using SNPs & GO software. Protein stability was investigated using I-Mutant and MUpro software. The structural and functional impact of point mutations was predicted using Project Hope software. Project Hope analyzes the mutations according to their size, charge, hydrophobicity, and conservancy. Results: The GLP1R gene was found to have an association with 20 other different genes. Among the most important ones is the GCG (glucagon) gene which is also a trans membrane protein. Overall 7229 variants were seen, and the missense variants or nsSNPs (146) were selected for further analysis. The total number of nsSNPs obtained in this study was 146. After being subjected to SIFT software (27 Deleterious and 119 Tolerated) were predicted. Analysis with Provean showed that (20 deleterious and 7 neutral). Analysis using Polyphen-2 revealed 17 probably damaging, 2 possibly damaging and 1 benign nsSNPs. Using two additional software SNPs & GO and PHD-SNPs showed that 14 and 17 nsSNPs had a disease effect, respectively. Project Hope software predicts the effect of the 14 nsSNPs on the protein function due to differences in charge, size, hydrophobicity, and conservancy between the wild and mutant types. Conclusion: In this study, the 14 nsSNPs which were highly affected the protein function. This protein is providing the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes and also affect the treatment of diabetic patients due to the fact that the protein acts as an important drug target.","PeriodicalId":70839,"journal":{"name":"计算分子生物学(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type-2 Diabetes Mellitus and Glucagon-Like Peptide-1 Receptor toward Predicting Possible Association\",\"authors\":\"Nabaa Kamal Alshafei, Intisar Hassan Saeed, Mona Abdelrahman Mohamed Khaier\",\"doi\":\"10.4236/cmb.2023.133004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: This study aimed to investigate the effect of non-synonymous SNPs (nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein function and structure using different computational software. Introduction: The GLP1R gene provides the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes. The protein is an important drug target for the treatment of type-2 diabetes and stroke. Material and Methods: Different nsSNPs and protein-related sequences were obtained from NCBI and ExPASY database. Gene associations and interactions were predicted using GeneMANIA software. Deleterious and damaging effects of nsSNPs were analyzed using SIFT, Provean, and Polyphen-2. The association of the nsSNPs with the disease was predicted using SNPs & GO software. Protein stability was investigated using I-Mutant and MUpro software. The structural and functional impact of point mutations was predicted using Project Hope software. Project Hope analyzes the mutations according to their size, charge, hydrophobicity, and conservancy. Results: The GLP1R gene was found to have an association with 20 other different genes. Among the most important ones is the GCG (glucagon) gene which is also a trans membrane protein. Overall 7229 variants were seen, and the missense variants or nsSNPs (146) were selected for further analysis. The total number of nsSNPs obtained in this study was 146. After being subjected to SIFT software (27 Deleterious and 119 Tolerated) were predicted. Analysis with Provean showed that (20 deleterious and 7 neutral). Analysis using Polyphen-2 revealed 17 probably damaging, 2 possibly damaging and 1 benign nsSNPs. Using two additional software SNPs & GO and PHD-SNPs showed that 14 and 17 nsSNPs had a disease effect, respectively. Project Hope software predicts the effect of the 14 nsSNPs on the protein function due to differences in charge, size, hydrophobicity, and conservancy between the wild and mutant types. Conclusion: In this study, the 14 nsSNPs which were highly affected the protein function. This protein is providing the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes and also affect the treatment of diabetic patients due to the fact that the protein acts as an important drug target.\",\"PeriodicalId\":70839,\"journal\":{\"name\":\"计算分子生物学(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算分子生物学(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/cmb.2023.133004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算分子生物学(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/cmb.2023.133004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用不同的计算软件,研究胰高血糖素样肽-1受体(GLP-1R)基因非同义snp (nssnp)对蛋白质功能和结构的影响。GLP1R基因为葡萄糖分解代谢所需的胰岛素激素的合成提供了必要的指令。该基因的多态性与糖尿病有关。该蛋白是治疗2型糖尿病和中风的重要药物靶点。材料与方法:从NCBI和ExPASY数据库中获取不同的nssnp和蛋白相关序列。使用GeneMANIA软件预测基因关联和相互作用。利用SIFT、Provean和polyphen2分析了nssnp的有害和破坏效应。使用SNPs & GO软件预测nssnp与疾病的关系。利用I-Mutant和MUpro软件研究蛋白稳定性。利用希望工程软件预测点突变的结构和功能影响。希望工程根据突变的大小、电荷、疏水性和保护特性来分析突变。结果:发现GLP1R基因与其他20个不同的基因有关联。其中最重要的是GCG(胰高血糖素)基因,它也是一种跨膜蛋白。共观察到7229个变异,并选择146个错义变异或nssnp进行进一步分析。本研究获得的nssnp总数为146个。经SIFT软件预测(27例有害,119例耐受)。经Provean分析,有害的有20个,中性的有7个。polyphen2分析发现17个可能有害,2个可能有害,1个良性nssnp。使用另外两个软件SNPs & GO和PHD-SNPs分别显示14和17个nssnp具有疾病效应。希望工程软件预测了14个nssnp对蛋白质功能的影响,这是由于野生型和突变型在电荷、大小、疏水性和保护方面的差异。结论:在本研究中发现了14个高度影响蛋白功能的nsSNPs。这种蛋白质为葡萄糖分解代谢所需要的胰岛素激素的合成提供了必要的指导。该基因的多态性与糖尿病有关,并且由于该蛋白作为重要的药物靶点而影响糖尿病患者的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type-2 Diabetes Mellitus and Glucagon-Like Peptide-1 Receptor toward Predicting Possible Association
Aim: This study aimed to investigate the effect of non-synonymous SNPs (nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein function and structure using different computational software. Introduction: The GLP1R gene provides the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes. The protein is an important drug target for the treatment of type-2 diabetes and stroke. Material and Methods: Different nsSNPs and protein-related sequences were obtained from NCBI and ExPASY database. Gene associations and interactions were predicted using GeneMANIA software. Deleterious and damaging effects of nsSNPs were analyzed using SIFT, Provean, and Polyphen-2. The association of the nsSNPs with the disease was predicted using SNPs & GO software. Protein stability was investigated using I-Mutant and MUpro software. The structural and functional impact of point mutations was predicted using Project Hope software. Project Hope analyzes the mutations according to their size, charge, hydrophobicity, and conservancy. Results: The GLP1R gene was found to have an association with 20 other different genes. Among the most important ones is the GCG (glucagon) gene which is also a trans membrane protein. Overall 7229 variants were seen, and the missense variants or nsSNPs (146) were selected for further analysis. The total number of nsSNPs obtained in this study was 146. After being subjected to SIFT software (27 Deleterious and 119 Tolerated) were predicted. Analysis with Provean showed that (20 deleterious and 7 neutral). Analysis using Polyphen-2 revealed 17 probably damaging, 2 possibly damaging and 1 benign nsSNPs. Using two additional software SNPs & GO and PHD-SNPs showed that 14 and 17 nsSNPs had a disease effect, respectively. Project Hope software predicts the effect of the 14 nsSNPs on the protein function due to differences in charge, size, hydrophobicity, and conservancy between the wild and mutant types. Conclusion: In this study, the 14 nsSNPs which were highly affected the protein function. This protein is providing the necessary instruction for the synthesis of the insulin hormones which is needed for glucose catabolism. Polymorphisms in this gene are associated with diabetes and also affect the treatment of diabetic patients due to the fact that the protein acts as an important drug target.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信