5G移动设备毫米波与Sub - 6GHz集成天线设计

Q3 Physics and Astronomy
R. M. Gomathi, M. Jeyabharathi, Tanvir Islam, D. Kumutha, K. Jayanthi, R. Delshi Howsalya Devi, V. Devipriya
{"title":"5G移动设备毫米波与Sub - 6GHz集成天线设计","authors":"R. M. Gomathi, M. Jeyabharathi, Tanvir Islam, D. Kumutha, K. Jayanthi, R. Delshi Howsalya Devi, V. Devipriya","doi":"10.21272/jnep.15(4).04027","DOIUrl":null,"url":null,"abstract":"In 5G applications, the antenna system plays a vital role to maintain the efficiency of the signal coverage during transmission. The millimeter-wave (mm-wave) and sub-6 GHz bands are integrated into the new antenna system which is suggested for the 5G handheld devices. The suggested antenna is a single antenna system that covers a 32.4 GHz bandwidth from 5.8 GHz to 38.2 GHz. The intended antenna structure has been obtained by introducing T-Shaped slots in the patch along with presence of parasitic elements on either side. The antenna's FR-4 substrate is developed with dimensions of 30  28  1.6 mm 2 . The gain varies be-tween 5 and 32 dBi across the operating frequency. The parasitic components are designed and connected with the patch to support the patch's ability to radiate with multiple resonances over a wide operating band. The optimal antenna includes six resonant frequencies 11 GHz, 18.2 GHz, 20.3 GHz, 21.7 GHz, 23.2 GHz, and 27 GHz. During the entire working frequency, the Voltage Standing Wave Ratio (VSWR) is obtained below 2, which signifies well impedance matching. The antenna maintains an efficiency of at least 65 % throughout, making it a strong candidate for 5G devices. The novel antenna geometry with compact size, wide operating band with multiple fruitful resonant frequencies, high gain, good radiation efficiency, omni-directional stable radiation patterns are the major findings reported in this article.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an Integrated mm-Wave and Sub 6GHz Antenna for 5G Mobile Devices\",\"authors\":\"R. M. Gomathi, M. Jeyabharathi, Tanvir Islam, D. Kumutha, K. Jayanthi, R. Delshi Howsalya Devi, V. Devipriya\",\"doi\":\"10.21272/jnep.15(4).04027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 5G applications, the antenna system plays a vital role to maintain the efficiency of the signal coverage during transmission. The millimeter-wave (mm-wave) and sub-6 GHz bands are integrated into the new antenna system which is suggested for the 5G handheld devices. The suggested antenna is a single antenna system that covers a 32.4 GHz bandwidth from 5.8 GHz to 38.2 GHz. The intended antenna structure has been obtained by introducing T-Shaped slots in the patch along with presence of parasitic elements on either side. The antenna's FR-4 substrate is developed with dimensions of 30  28  1.6 mm 2 . The gain varies be-tween 5 and 32 dBi across the operating frequency. The parasitic components are designed and connected with the patch to support the patch's ability to radiate with multiple resonances over a wide operating band. The optimal antenna includes six resonant frequencies 11 GHz, 18.2 GHz, 20.3 GHz, 21.7 GHz, 23.2 GHz, and 27 GHz. During the entire working frequency, the Voltage Standing Wave Ratio (VSWR) is obtained below 2, which signifies well impedance matching. The antenna maintains an efficiency of at least 65 % throughout, making it a strong candidate for 5G devices. The novel antenna geometry with compact size, wide operating band with multiple fruitful resonant frequencies, high gain, good radiation efficiency, omni-directional stable radiation patterns are the major findings reported in this article.\",\"PeriodicalId\":16654,\"journal\":{\"name\":\"Journal of Nano-and electronic Physics\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano-and electronic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jnep.15(4).04027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(4).04027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of an Integrated mm-Wave and Sub 6GHz Antenna for 5G Mobile Devices
In 5G applications, the antenna system plays a vital role to maintain the efficiency of the signal coverage during transmission. The millimeter-wave (mm-wave) and sub-6 GHz bands are integrated into the new antenna system which is suggested for the 5G handheld devices. The suggested antenna is a single antenna system that covers a 32.4 GHz bandwidth from 5.8 GHz to 38.2 GHz. The intended antenna structure has been obtained by introducing T-Shaped slots in the patch along with presence of parasitic elements on either side. The antenna's FR-4 substrate is developed with dimensions of 30  28  1.6 mm 2 . The gain varies be-tween 5 and 32 dBi across the operating frequency. The parasitic components are designed and connected with the patch to support the patch's ability to radiate with multiple resonances over a wide operating band. The optimal antenna includes six resonant frequencies 11 GHz, 18.2 GHz, 20.3 GHz, 21.7 GHz, 23.2 GHz, and 27 GHz. During the entire working frequency, the Voltage Standing Wave Ratio (VSWR) is obtained below 2, which signifies well impedance matching. The antenna maintains an efficiency of at least 65 % throughout, making it a strong candidate for 5G devices. The novel antenna geometry with compact size, wide operating band with multiple fruitful resonant frequencies, high gain, good radiation efficiency, omni-directional stable radiation patterns are the major findings reported in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nano-and electronic Physics
Journal of Nano-and electronic Physics Materials Science-Materials Science (all)
CiteScore
1.40
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信