有限元应用中三维单元的通用程序

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Adnan Shahriar, Arsalan Majlesi, Arturo Montoya
{"title":"有限元应用中三维单元的通用程序","authors":"Adnan Shahriar, Arsalan Majlesi, Arturo Montoya","doi":"10.3390/computation11100197","DOIUrl":null,"url":null,"abstract":"This paper presents a general procedure to formulate and implement 3D elements of arbitrary order in meshes with multiple element types. This procedure includes obtaining shape functions and integration quadrature and establishing an approach for checking the generated element’s compatibility with adjacent elements’ surfaces. This procedure was implemented in Matlab, using its symbolic and graphics toolbox, and complied as a GUI interface named ShapeGen3D to provide finite element users with a tool to tailor elements according to their analysis needs. ShapeGen3D also outputs files with the element formulation needed to enable users to implement the generated elements in other programming languages or through user elements in commercial finite element software. Currently, finite element (FE) users are limited to employing element formulation available in the literature, commercial software, or existing element libraries. Thus, the developed procedure implemented in ShapeGen3D offers FEM users the possibility to employ elements beyond those readily available. The procedure was tested by generating the formulation for a brick element, a brick transition element, and higher-order hexahedron and tetrahedron elements that can be used in a spectral finite element analysis. The formulation obtained for the 20-node element was in perfect agreement with the formulation available in the literature. In addition, the results showed that the interpolation condition was met for all the generated elements, which provides confidence in the implementation of the process. Researchers and educators can use this procedure to efficiently develop and illustrate three-dimensional elements.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"94 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A General Procedure to Formulate 3D Elements for Finite Element Applications\",\"authors\":\"Adnan Shahriar, Arsalan Majlesi, Arturo Montoya\",\"doi\":\"10.3390/computation11100197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a general procedure to formulate and implement 3D elements of arbitrary order in meshes with multiple element types. This procedure includes obtaining shape functions and integration quadrature and establishing an approach for checking the generated element’s compatibility with adjacent elements’ surfaces. This procedure was implemented in Matlab, using its symbolic and graphics toolbox, and complied as a GUI interface named ShapeGen3D to provide finite element users with a tool to tailor elements according to their analysis needs. ShapeGen3D also outputs files with the element formulation needed to enable users to implement the generated elements in other programming languages or through user elements in commercial finite element software. Currently, finite element (FE) users are limited to employing element formulation available in the literature, commercial software, or existing element libraries. Thus, the developed procedure implemented in ShapeGen3D offers FEM users the possibility to employ elements beyond those readily available. The procedure was tested by generating the formulation for a brick element, a brick transition element, and higher-order hexahedron and tetrahedron elements that can be used in a spectral finite element analysis. The formulation obtained for the 20-node element was in perfect agreement with the formulation available in the literature. In addition, the results showed that the interpolation condition was met for all the generated elements, which provides confidence in the implementation of the process. Researchers and educators can use this procedure to efficiently develop and illustrate three-dimensional elements.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11100197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11100197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了在多种单元类型的网格中形成和实现任意顺序的三维单元的一般程序。该过程包括获得形状函数和积分正交,并建立了一种方法来检查生成的单元与相邻单元表面的兼容性。该程序在Matlab中使用Matlab的符号和图形工具箱实现,并编译成一个名为ShapeGen3D的GUI界面,为有限元用户提供一个根据分析需求定制元素的工具。ShapeGen3D还输出带有所需元素公式的文件,使用户能够在其他编程语言中或通过商业有限元软件中的用户元素实现生成的元素。目前,有限元(FE)用户仅限于使用文献、商业软件或现有元素库中可用的元素公式。因此,在ShapeGen3D中实现的开发程序为FEM用户提供了使用超出那些现成的元素的可能性。通过生成可用于谱有限元分析的砖单元、砖过渡单元以及高阶六面体和四面体单元的公式,对该程序进行了测试。所得的20节点单元公式与文献中的公式完全一致。结果表明,生成的各单元均满足插值条件,为该过程的实现提供了信心。研究人员和教育工作者可以使用这个程序来有效地开发和说明三维元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A General Procedure to Formulate 3D Elements for Finite Element Applications
This paper presents a general procedure to formulate and implement 3D elements of arbitrary order in meshes with multiple element types. This procedure includes obtaining shape functions and integration quadrature and establishing an approach for checking the generated element’s compatibility with adjacent elements’ surfaces. This procedure was implemented in Matlab, using its symbolic and graphics toolbox, and complied as a GUI interface named ShapeGen3D to provide finite element users with a tool to tailor elements according to their analysis needs. ShapeGen3D also outputs files with the element formulation needed to enable users to implement the generated elements in other programming languages or through user elements in commercial finite element software. Currently, finite element (FE) users are limited to employing element formulation available in the literature, commercial software, or existing element libraries. Thus, the developed procedure implemented in ShapeGen3D offers FEM users the possibility to employ elements beyond those readily available. The procedure was tested by generating the formulation for a brick element, a brick transition element, and higher-order hexahedron and tetrahedron elements that can be used in a spectral finite element analysis. The formulation obtained for the 20-node element was in perfect agreement with the formulation available in the literature. In addition, the results showed that the interpolation condition was met for all the generated elements, which provides confidence in the implementation of the process. Researchers and educators can use this procedure to efficiently develop and illustrate three-dimensional elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computation
Computation Mathematics-Applied Mathematics
CiteScore
3.50
自引率
4.50%
发文量
201
审稿时长
8 weeks
期刊介绍: Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信