Yurong Wang, Lian Jiang, Baohe Li, Yitong Ma, Yiwen Zeng, Donghong Yu, Nong Wang
{"title":"用caco3 - sio2包封碳点制备超疏水荧光微/纳米复合材料","authors":"Yurong Wang, Lian Jiang, Baohe Li, Yitong Ma, Yiwen Zeng, Donghong Yu, Nong Wang","doi":"10.1080/09276440.2023.2262748","DOIUrl":null,"url":null,"abstract":"ABSTRACTIn this paper, polyamine-functionalized carbon dots (CDs) were synthesized by means of low temperature (<100°C) carbonization of citric acid at the presence of polyethylenimine (PEI), resulting spherical calcium carbonate micro-particles from inverse micro-emulsion system. Nanoscaled spherical silicas were prepared by Stöber method via deposition on the surface of micron calcium carbonate. Scanning- and transmission-electron microscopic analysis confirmed a micro-/nano-complex structure, enabling the composite material coating possessed coarser surface similar to those of ‘lotus leaf’. After modification with 1 H, 1 H, 2 H, 2 H-perfluorodecanethiol, both good super hydrophobicity and good fluorescent performance were confirmed by the water contact angle of 154.1°±1.5°, their surface-free energy, and fluorescence quantum yield of 14.1%, which provides an inexpensive and easy way to fabricate superhydrophobic material with fluorescence characteristics and promotes high value application of inorganic materials.KEYWORDS: Composite materialfluorescencehydrophobicityOwens-Wendt model Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Sino-Danish Center for Education and Research Research on Standardization System of Salt Lake Chemical Industry Chain [2019-GX-168]; Innovation Fund of Small and Medium-sized Enterprises of Gansu Province [1407GCCA013].","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superhydrophobic fluorescent micro-/nano-composites from carbon dots encapsulated in CaCO <sub>3</sub> -SiO <sub>2</sub>\",\"authors\":\"Yurong Wang, Lian Jiang, Baohe Li, Yitong Ma, Yiwen Zeng, Donghong Yu, Nong Wang\",\"doi\":\"10.1080/09276440.2023.2262748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTIn this paper, polyamine-functionalized carbon dots (CDs) were synthesized by means of low temperature (<100°C) carbonization of citric acid at the presence of polyethylenimine (PEI), resulting spherical calcium carbonate micro-particles from inverse micro-emulsion system. Nanoscaled spherical silicas were prepared by Stöber method via deposition on the surface of micron calcium carbonate. Scanning- and transmission-electron microscopic analysis confirmed a micro-/nano-complex structure, enabling the composite material coating possessed coarser surface similar to those of ‘lotus leaf’. After modification with 1 H, 1 H, 2 H, 2 H-perfluorodecanethiol, both good super hydrophobicity and good fluorescent performance were confirmed by the water contact angle of 154.1°±1.5°, their surface-free energy, and fluorescence quantum yield of 14.1%, which provides an inexpensive and easy way to fabricate superhydrophobic material with fluorescence characteristics and promotes high value application of inorganic materials.KEYWORDS: Composite materialfluorescencehydrophobicityOwens-Wendt model Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Sino-Danish Center for Education and Research Research on Standardization System of Salt Lake Chemical Industry Chain [2019-GX-168]; Innovation Fund of Small and Medium-sized Enterprises of Gansu Province [1407GCCA013].\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2262748\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2262748","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Superhydrophobic fluorescent micro-/nano-composites from carbon dots encapsulated in CaCO 3 -SiO 2
ABSTRACTIn this paper, polyamine-functionalized carbon dots (CDs) were synthesized by means of low temperature (<100°C) carbonization of citric acid at the presence of polyethylenimine (PEI), resulting spherical calcium carbonate micro-particles from inverse micro-emulsion system. Nanoscaled spherical silicas were prepared by Stöber method via deposition on the surface of micron calcium carbonate. Scanning- and transmission-electron microscopic analysis confirmed a micro-/nano-complex structure, enabling the composite material coating possessed coarser surface similar to those of ‘lotus leaf’. After modification with 1 H, 1 H, 2 H, 2 H-perfluorodecanethiol, both good super hydrophobicity and good fluorescent performance were confirmed by the water contact angle of 154.1°±1.5°, their surface-free energy, and fluorescence quantum yield of 14.1%, which provides an inexpensive and easy way to fabricate superhydrophobic material with fluorescence characteristics and promotes high value application of inorganic materials.KEYWORDS: Composite materialfluorescencehydrophobicityOwens-Wendt model Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Sino-Danish Center for Education and Research Research on Standardization System of Salt Lake Chemical Industry Chain [2019-GX-168]; Innovation Fund of Small and Medium-sized Enterprises of Gansu Province [1407GCCA013].
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields