基于对称哈密顿变换的多量子位系统加速量子最优控制

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
Xian Wang, Mahmut Sait Okyay, Anshuman Kumar, Bryan M. Wong
{"title":"基于对称哈密顿变换的多量子位系统加速量子最优控制","authors":"Xian Wang, Mahmut Sait Okyay, Anshuman Kumar, Bryan M. Wong","doi":"10.1116/5.0162455","DOIUrl":null,"url":null,"abstract":"We present a novel, computationally efficient approach to accelerate quantum optimal control calculations of large multi-qubit systems used in a variety of quantum computing applications. By leveraging the intrinsic symmetry of finite groups, the Hilbert space can be decomposed and the Hamiltonians block diagonalized to enable extremely fast quantum optimal control calculations. Our approach reduces the Hamiltonian size of an n-qubit system from 2n×2n to O(n×n) or O((2n/n)×(2n/n)) under Sn or Dn symmetry, respectively. Most importantly, this approach reduces the computational runtime of qubit optimal control calculations by orders of magnitude while maintaining the same accuracy as the conventional method. As prospective applications, we show that (1) symmetry-protected subspaces can be potential platforms for quantum error suppression and simulation of other quantum Hamiltonians and (2) Lie–Trotter–Suzuki decomposition approaches can generalize our method to a general variety of multi-qubit systems.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":"10 1","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerating quantum optimal control of multi-qubit systems with symmetry-based Hamiltonian transformations\",\"authors\":\"Xian Wang, Mahmut Sait Okyay, Anshuman Kumar, Bryan M. Wong\",\"doi\":\"10.1116/5.0162455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel, computationally efficient approach to accelerate quantum optimal control calculations of large multi-qubit systems used in a variety of quantum computing applications. By leveraging the intrinsic symmetry of finite groups, the Hilbert space can be decomposed and the Hamiltonians block diagonalized to enable extremely fast quantum optimal control calculations. Our approach reduces the Hamiltonian size of an n-qubit system from 2n×2n to O(n×n) or O((2n/n)×(2n/n)) under Sn or Dn symmetry, respectively. Most importantly, this approach reduces the computational runtime of qubit optimal control calculations by orders of magnitude while maintaining the same accuracy as the conventional method. As prospective applications, we show that (1) symmetry-protected subspaces can be potential platforms for quantum error suppression and simulation of other quantum Hamiltonians and (2) Lie–Trotter–Suzuki decomposition approaches can generalize our method to a general variety of multi-qubit systems.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0162455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0162455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的,计算效率高的方法来加速各种量子计算应用中使用的大型多量子位系统的量子最优控制计算。利用有限群的固有对称性,可以对希尔伯特空间进行分解,并将哈密顿量块对角化,从而实现极快的量子最优控制计算。我们的方法将n-量子比特系统的哈密顿大小分别从2n×2n降低到O(n×n)或O((2n/n)×(2n/n)),在Sn或Dn对称下。最重要的是,该方法在保持与传统方法相同精度的同时,将量子比特最优控制计算的计算运行时间减少了几个数量级。作为潜在的应用,我们表明(1)对称保护子空间可以成为量子误差抑制和模拟其他量子哈密顿量的潜在平台;(2)Lie-Trotter-Suzuki分解方法可以将我们的方法推广到各种各样的多量子位系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating quantum optimal control of multi-qubit systems with symmetry-based Hamiltonian transformations
We present a novel, computationally efficient approach to accelerate quantum optimal control calculations of large multi-qubit systems used in a variety of quantum computing applications. By leveraging the intrinsic symmetry of finite groups, the Hilbert space can be decomposed and the Hamiltonians block diagonalized to enable extremely fast quantum optimal control calculations. Our approach reduces the Hamiltonian size of an n-qubit system from 2n×2n to O(n×n) or O((2n/n)×(2n/n)) under Sn or Dn symmetry, respectively. Most importantly, this approach reduces the computational runtime of qubit optimal control calculations by orders of magnitude while maintaining the same accuracy as the conventional method. As prospective applications, we show that (1) symmetry-protected subspaces can be potential platforms for quantum error suppression and simulation of other quantum Hamiltonians and (2) Lie–Trotter–Suzuki decomposition approaches can generalize our method to a general variety of multi-qubit systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信