{"title":"Sturm-Liouville特征值问题谱解的数值计算","authors":"Sameh Gana","doi":"10.28924/2291-8639-21-2023-86","DOIUrl":null,"url":null,"abstract":"This paper focuses on the study of Sturm-Liouville eigenvalue problems. In the classical Chebyshev collocation method, the Sturm-Liouville problem is discretized to a generalized eigenvalue problem where the functions represent interpolants in suitably rescaled Chebyshev points. We are concerned with the computation of high-order eigenvalues of Sturm-Liouville problems using an effective method of discretization based on the Chebfun software algorithms with domain truncation. We solve some numerical Sturm-Liouville eigenvalue problems and demonstrate the efficiency of computations.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Computation of Spectral Solutions for Sturm-Liouville Eigenvalue Problems\",\"authors\":\"Sameh Gana\",\"doi\":\"10.28924/2291-8639-21-2023-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the study of Sturm-Liouville eigenvalue problems. In the classical Chebyshev collocation method, the Sturm-Liouville problem is discretized to a generalized eigenvalue problem where the functions represent interpolants in suitably rescaled Chebyshev points. We are concerned with the computation of high-order eigenvalues of Sturm-Liouville problems using an effective method of discretization based on the Chebfun software algorithms with domain truncation. We solve some numerical Sturm-Liouville eigenvalue problems and demonstrate the efficiency of computations.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Numerical Computation of Spectral Solutions for Sturm-Liouville Eigenvalue Problems
This paper focuses on the study of Sturm-Liouville eigenvalue problems. In the classical Chebyshev collocation method, the Sturm-Liouville problem is discretized to a generalized eigenvalue problem where the functions represent interpolants in suitably rescaled Chebyshev points. We are concerned with the computation of high-order eigenvalues of Sturm-Liouville problems using an effective method of discretization based on the Chebfun software algorithms with domain truncation. We solve some numerical Sturm-Liouville eigenvalue problems and demonstrate the efficiency of computations.