Sturm-Liouville特征值问题谱解的数值计算

IF 0.7 Q2 MATHEMATICS
Sameh Gana
{"title":"Sturm-Liouville特征值问题谱解的数值计算","authors":"Sameh Gana","doi":"10.28924/2291-8639-21-2023-86","DOIUrl":null,"url":null,"abstract":"This paper focuses on the study of Sturm-Liouville eigenvalue problems. In the classical Chebyshev collocation method, the Sturm-Liouville problem is discretized to a generalized eigenvalue problem where the functions represent interpolants in suitably rescaled Chebyshev points. We are concerned with the computation of high-order eigenvalues of Sturm-Liouville problems using an effective method of discretization based on the Chebfun software algorithms with domain truncation. We solve some numerical Sturm-Liouville eigenvalue problems and demonstrate the efficiency of computations.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Computation of Spectral Solutions for Sturm-Liouville Eigenvalue Problems\",\"authors\":\"Sameh Gana\",\"doi\":\"10.28924/2291-8639-21-2023-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the study of Sturm-Liouville eigenvalue problems. In the classical Chebyshev collocation method, the Sturm-Liouville problem is discretized to a generalized eigenvalue problem where the functions represent interpolants in suitably rescaled Chebyshev points. We are concerned with the computation of high-order eigenvalues of Sturm-Liouville problems using an effective method of discretization based on the Chebfun software algorithms with domain truncation. We solve some numerical Sturm-Liouville eigenvalue problems and demonstrate the efficiency of computations.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究Sturm-Liouville特征值问题。在经典的Chebyshev配置方法中,Sturm-Liouville问题被离散为一个广义特征值问题,其中函数表示适当重标Chebyshev点上的插值。采用一种有效的基于Chebfun软件算法的域截断离散化方法,研究Sturm-Liouville问题的高阶特征值的计算。我们解决了一些数值Sturm-Liouville特征值问题,证明了计算的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Computation of Spectral Solutions for Sturm-Liouville Eigenvalue Problems
This paper focuses on the study of Sturm-Liouville eigenvalue problems. In the classical Chebyshev collocation method, the Sturm-Liouville problem is discretized to a generalized eigenvalue problem where the functions represent interpolants in suitably rescaled Chebyshev points. We are concerned with the computation of high-order eigenvalues of Sturm-Liouville problems using an effective method of discretization based on the Chebfun software algorithms with domain truncation. We solve some numerical Sturm-Liouville eigenvalue problems and demonstrate the efficiency of computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信