基于联合储备智能和特征选择技术的机器故障预测

Q2 Computer Science
Amal Shaheen, Mustafa Hammad, Wael Elmedany, Riadh Ksantini, Saeed Sharif
{"title":"基于联合储备智能和特征选择技术的机器故障预测","authors":"Amal Shaheen, Mustafa Hammad, Wael Elmedany, Riadh Ksantini, Saeed Sharif","doi":"10.1080/1206212x.2023.2260619","DOIUrl":null,"url":null,"abstract":"A model with high accuracy of machine failure prediction is important for any machine life cycle. In this paper, a prediction model based on machine learning methods is proposed. The used method is a combination of machine learning algorithms and techniques. The machine learning algorithm is a data mining technique that has been widely used as a prediction model for classifying problems. Five algorithms have been tested including JRIP, logistic, KStar, Bayes network and decision table machine learning. The evaluation process is done by applying the algorithms on a predictive dataset using different performance measures. In the proposed model, the feature selection and voting techniques are used and applied in the classification process for each classifier. From the comparison of the result, the feature selection shows the best performance result. Paired t-test evaluation measures were considered to confirm our conclusion. The best accuracy result among the five classifiers shows that joint reserve intelligence classifier can be used to predict the failure with an accuracy high as 0.983. Applying classifier subset evaluation using the JRIP classifier can enhance the accuracy result to be 0.985. The finding shows that the proposed model improves the results of the classifiers.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine failure prediction using joint reserve intelligence with feature selection technique\",\"authors\":\"Amal Shaheen, Mustafa Hammad, Wael Elmedany, Riadh Ksantini, Saeed Sharif\",\"doi\":\"10.1080/1206212x.2023.2260619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model with high accuracy of machine failure prediction is important for any machine life cycle. In this paper, a prediction model based on machine learning methods is proposed. The used method is a combination of machine learning algorithms and techniques. The machine learning algorithm is a data mining technique that has been widely used as a prediction model for classifying problems. Five algorithms have been tested including JRIP, logistic, KStar, Bayes network and decision table machine learning. The evaluation process is done by applying the algorithms on a predictive dataset using different performance measures. In the proposed model, the feature selection and voting techniques are used and applied in the classification process for each classifier. From the comparison of the result, the feature selection shows the best performance result. Paired t-test evaluation measures were considered to confirm our conclusion. The best accuracy result among the five classifiers shows that joint reserve intelligence classifier can be used to predict the failure with an accuracy high as 0.983. Applying classifier subset evaluation using the JRIP classifier can enhance the accuracy result to be 0.985. The finding shows that the proposed model improves the results of the classifiers.\",\"PeriodicalId\":39673,\"journal\":{\"name\":\"International Journal of Computers and Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1206212x.2023.2260619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212x.2023.2260619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

对于任何机械寿命周期,高精度的机械故障预测模型都是非常重要的。本文提出了一种基于机器学习方法的预测模型。所使用的方法是机器学习算法和技术的结合。机器学习算法是一种数据挖掘技术,已被广泛用作分类问题的预测模型。测试了五种算法,包括JRIP, logistic, KStar,贝叶斯网络和决策表机器学习。评估过程是通过使用不同的性能度量将算法应用于预测数据集来完成的。在该模型中,特征选择和投票技术被应用到每个分类器的分类过程中。从结果的比较来看,特征选择显示出最佳的性能结果。采用配对t检验评价措施来证实我们的结论。5种分类器中准确率最高的结果表明,联合储备智能分类器可用于故障预测,准确率高达0.983。使用JRIP分类器进行分类器子集评价,可将准确率提高到0.985。结果表明,该模型改善了分类器的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine failure prediction using joint reserve intelligence with feature selection technique
A model with high accuracy of machine failure prediction is important for any machine life cycle. In this paper, a prediction model based on machine learning methods is proposed. The used method is a combination of machine learning algorithms and techniques. The machine learning algorithm is a data mining technique that has been widely used as a prediction model for classifying problems. Five algorithms have been tested including JRIP, logistic, KStar, Bayes network and decision table machine learning. The evaluation process is done by applying the algorithms on a predictive dataset using different performance measures. In the proposed model, the feature selection and voting techniques are used and applied in the classification process for each classifier. From the comparison of the result, the feature selection shows the best performance result. Paired t-test evaluation measures were considered to confirm our conclusion. The best accuracy result among the five classifiers shows that joint reserve intelligence classifier can be used to predict the failure with an accuracy high as 0.983. Applying classifier subset evaluation using the JRIP classifier can enhance the accuracy result to be 0.985. The finding shows that the proposed model improves the results of the classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computers and Applications
International Journal of Computers and Applications Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.70
自引率
0.00%
发文量
20
期刊介绍: The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信