{"title":"连续渗流团簇中反射扩散的淬灭不变性原理","authors":"Yutaka TAKEUCHI","doi":"10.2969/jmsj/89198919","DOIUrl":null,"url":null,"abstract":"We consider a continuum percolation built over stationary ergodic point processes. Assuming that the occupied region has a unique unbounded cluster and the cluster satisfies volume regularity and isoperimetric condition, we prove a quenched invariance principle for reflecting diffusions on the cluster.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quenched invariance principle for a reflecting diffusion in a continuum percolation cluster\",\"authors\":\"Yutaka TAKEUCHI\",\"doi\":\"10.2969/jmsj/89198919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a continuum percolation built over stationary ergodic point processes. Assuming that the occupied region has a unique unbounded cluster and the cluster satisfies volume regularity and isoperimetric condition, we prove a quenched invariance principle for reflecting diffusions on the cluster.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/89198919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/jmsj/89198919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quenched invariance principle for a reflecting diffusion in a continuum percolation cluster
We consider a continuum percolation built over stationary ergodic point processes. Assuming that the occupied region has a unique unbounded cluster and the cluster satisfies volume regularity and isoperimetric condition, we prove a quenched invariance principle for reflecting diffusions on the cluster.