{"title":"单台机器上双部件作业的双标准制造调度","authors":"Yijie Li","doi":"10.1007/s12351-023-00799-1","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the bicriteria problem of non-preemptively scheduling n jobs, each of which is associated with a due date and comprises a standard and a specific component, on a single fabrication machine to minimize makespan and maximum lateness simultaneously. The specific components are processed individually and the standard components are grouped into batches for processing. A setup time is required before each batch of standard components is processed. A standard component is available (i.e., ready for delivery to the next production stage) only when the batch it belongs to is totally completed, whereas a specific component is available on completion of its processing. The completion time of a job is defined as the moment when both its two components have been processed and are available. An $$O(n^2\\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -time algorithm with linear memory requirements is presented which can generate all Pareto optimal points and find a corresponding Pareto optimal schedule for each Pareto optimal point.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bicriteria fabrication scheduling of two-component jobs on a single machine\",\"authors\":\"Yijie Li\",\"doi\":\"10.1007/s12351-023-00799-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies the bicriteria problem of non-preemptively scheduling n jobs, each of which is associated with a due date and comprises a standard and a specific component, on a single fabrication machine to minimize makespan and maximum lateness simultaneously. The specific components are processed individually and the standard components are grouped into batches for processing. A setup time is required before each batch of standard components is processed. A standard component is available (i.e., ready for delivery to the next production stage) only when the batch it belongs to is totally completed, whereas a specific component is available on completion of its processing. The completion time of a job is defined as the moment when both its two components have been processed and are available. An $$O(n^2\\\\log n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -time algorithm with linear memory requirements is presented which can generate all Pareto optimal points and find a corresponding Pareto optimal schedule for each Pareto optimal point.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12351-023-00799-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12351-023-00799-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
摘要研究了单台加工机上n个作业的非抢占调度的双准则问题,每个作业都有一个交货期,由一个标准部件和一个特定部件组成,以同时最小化完工时间和最大延迟。特定组分单独加工,标准组分分组成批加工。在处理每批标准组件之前都需要一段设置时间。标准组件只有在它所属的批次完全完成时才可用(即准备好交付到下一个生产阶段),而特定组件在完成其加工后才可用。作业的完成时间定义为其两个组件都已处理并且可用的时刻。提出了一种时间为$$O(n^2\log n)$$ O (n2 log n)的线性存储算法,该算法可以生成所有Pareto最优点,并为每个Pareto最优点找到相应的Pareto最优调度。
Bicriteria fabrication scheduling of two-component jobs on a single machine
Abstract This paper studies the bicriteria problem of non-preemptively scheduling n jobs, each of which is associated with a due date and comprises a standard and a specific component, on a single fabrication machine to minimize makespan and maximum lateness simultaneously. The specific components are processed individually and the standard components are grouped into batches for processing. A setup time is required before each batch of standard components is processed. A standard component is available (i.e., ready for delivery to the next production stage) only when the batch it belongs to is totally completed, whereas a specific component is available on completion of its processing. The completion time of a job is defined as the moment when both its two components have been processed and are available. An $$O(n^2\log n)$$ O(n2logn) -time algorithm with linear memory requirements is presented which can generate all Pareto optimal points and find a corresponding Pareto optimal schedule for each Pareto optimal point.