Francesco Montorsi, Daniel Aranda, Marco Garavelli, Fabrizio Santoro, Francesco Segatta
{"title":"来自量子动力学的光谱学:混合波函数/分析线形函数方法","authors":"Francesco Montorsi, Daniel Aranda, Marco Garavelli, Fabrizio Santoro, Francesco Segatta","doi":"10.1007/s00214-023-03035-3","DOIUrl":null,"url":null,"abstract":"Abstract Quantum dynamics is the natural framework in which accurate simulation of spectroscopy of nonadiabatically coupled molecular systems can be obtained. Even if efficient quantum dynamics approaches have been developed, the number of degrees of freedom that need to be considered in realistic systems is typically too high to explicitly account for all of them. Moreover, in open-quantum systems, a quasi-continuum of low-frequency environment modes need to be included to get a proper description of the spectral bands. Here, we describe an approach to account for a large number of modes, based on their partitioning into two sets: a set of dynamically relevant modes (so-called active modes) that are treated explicitly in quantum dynamics, and a set of modes that are only spectroscopically relevant (so-called spectator modes), treated via analytical line shape functions. Linear and nonlinear spectroscopy for a realistic model system is simulated, providing a clear framework and domain of applicability in which the introduced approach is exact, and assessing the error introduced when such a partitioning is only approximate.","PeriodicalId":23045,"journal":{"name":"Theoretical Chemistry Accounts","volume":"9 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopy from quantum dynamics: a mixed wave function/analytical line shape functions approach\",\"authors\":\"Francesco Montorsi, Daniel Aranda, Marco Garavelli, Fabrizio Santoro, Francesco Segatta\",\"doi\":\"10.1007/s00214-023-03035-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quantum dynamics is the natural framework in which accurate simulation of spectroscopy of nonadiabatically coupled molecular systems can be obtained. Even if efficient quantum dynamics approaches have been developed, the number of degrees of freedom that need to be considered in realistic systems is typically too high to explicitly account for all of them. Moreover, in open-quantum systems, a quasi-continuum of low-frequency environment modes need to be included to get a proper description of the spectral bands. Here, we describe an approach to account for a large number of modes, based on their partitioning into two sets: a set of dynamically relevant modes (so-called active modes) that are treated explicitly in quantum dynamics, and a set of modes that are only spectroscopically relevant (so-called spectator modes), treated via analytical line shape functions. Linear and nonlinear spectroscopy for a realistic model system is simulated, providing a clear framework and domain of applicability in which the introduced approach is exact, and assessing the error introduced when such a partitioning is only approximate.\",\"PeriodicalId\":23045,\"journal\":{\"name\":\"Theoretical Chemistry Accounts\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Chemistry Accounts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00214-023-03035-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Chemistry Accounts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00214-023-03035-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Spectroscopy from quantum dynamics: a mixed wave function/analytical line shape functions approach
Abstract Quantum dynamics is the natural framework in which accurate simulation of spectroscopy of nonadiabatically coupled molecular systems can be obtained. Even if efficient quantum dynamics approaches have been developed, the number of degrees of freedom that need to be considered in realistic systems is typically too high to explicitly account for all of them. Moreover, in open-quantum systems, a quasi-continuum of low-frequency environment modes need to be included to get a proper description of the spectral bands. Here, we describe an approach to account for a large number of modes, based on their partitioning into two sets: a set of dynamically relevant modes (so-called active modes) that are treated explicitly in quantum dynamics, and a set of modes that are only spectroscopically relevant (so-called spectator modes), treated via analytical line shape functions. Linear and nonlinear spectroscopy for a realistic model system is simulated, providing a clear framework and domain of applicability in which the introduced approach is exact, and assessing the error introduced when such a partitioning is only approximate.
期刊介绍:
TCA publishes papers in all fields of theoretical chemistry, computational chemistry, and modeling. Fundamental studies as well as applications are included in the scope. In many cases, theorists and computational chemists have special concerns which reach either across the vertical borders of the special disciplines in chemistry or else across the horizontal borders of structure, spectra, synthesis, and dynamics. TCA is especially interested in papers that impact upon multiple chemical disciplines.