{"title":"稳定性和某些$$\\mathbb {P}^n$$函子","authors":"Fabian Reede","doi":"10.1007/s40687-023-00405-y","DOIUrl":null,"url":null,"abstract":"Abstract Let X be a K3 surface. We prove that Addington’s $$\\mathbb {P}^n$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> -functor between the derived categories of X and the Hilbert scheme of points $$X^{[k]}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>k</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msup> </mml:math> maps stable vector bundles on X to stable vector bundles on $$X^{[k]}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>k</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msup> </mml:math> , given some numerical conditions are satisfied.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and certain $$\\\\mathbb {P}^n$$-functors\",\"authors\":\"Fabian Reede\",\"doi\":\"10.1007/s40687-023-00405-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X be a K3 surface. We prove that Addington’s $$\\\\mathbb {P}^n$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> -functor between the derived categories of X and the Hilbert scheme of points $$X^{[k]}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>k</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msup> </mml:math> maps stable vector bundles on X to stable vector bundles on $$X^{[k]}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>k</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:msup> </mml:math> , given some numerical conditions are satisfied.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-023-00405-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40687-023-00405-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
设X是一个K3曲面。在一定的数值条件下,证明了Addington的$$\mathbb {P}^n$$ P n -函子在X的衍生范畴和点$$X^{[k]}$$ X [k]的Hilbert格式之间将X上的稳定向量束映射到$$X^{[k]}$$ X [k]上的稳定向量束。
Abstract Let X be a K3 surface. We prove that Addington’s $$\mathbb {P}^n$$ Pn -functor between the derived categories of X and the Hilbert scheme of points $$X^{[k]}$$ X[k] maps stable vector bundles on X to stable vector bundles on $$X^{[k]}$$ X[k] , given some numerical conditions are satisfied.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.