{"title":"一类半线性分数阶Neumann问题的存在性与不存在性结果","authors":"Eleonora Cinti, Francesca Colasuonno","doi":"10.1007/s00030-023-00886-4","DOIUrl":null,"url":null,"abstract":"Abstract We establish a priori $$L^\\infty $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> </mml:math> -estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $$0<s\\le 1/2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>s</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> the analysis started in [7].","PeriodicalId":49747,"journal":{"name":"Nodea-Nonlinear Differential Equations and Applications","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and non-existence results for a semilinear fractional Neumann problem\",\"authors\":\"Eleonora Cinti, Francesca Colasuonno\",\"doi\":\"10.1007/s00030-023-00886-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish a priori $$L^\\\\infty $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> </mml:math> -estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $$0<s\\\\le 1/2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>s</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> the analysis started in [7].\",\"PeriodicalId\":49747,\"journal\":{\"name\":\"Nodea-Nonlinear Differential Equations and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nodea-Nonlinear Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00886-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nodea-Nonlinear Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00886-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Existence and non-existence results for a semilinear fractional Neumann problem
Abstract We establish a priori $$L^\infty $$ L∞ -estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $$00<s≤1/2 the analysis started in [7].
期刊介绍:
Nonlinear Differential Equations and Applications (NoDEA) provides a forum for research contributions on nonlinear differential equations motivated by application to applied sciences.
The research areas of interest for NoDEA include, but are not limited to: deterministic and stochastic ordinary and partial differential equations, finite and infinite-dimensional dynamical systems, qualitative analysis of solutions, variational, topological and viscosity methods, mathematical control theory, complex dynamics and pattern formation, approximation and numerical aspects.