具有不连续扩散系数的随机微分方程

IF 0.4 Q4 STATISTICS & PROBABILITY
Soledad Torres, Lauri Viitasaari
{"title":"具有不连续扩散系数的随机微分方程","authors":"Soledad Torres, Lauri Viitasaari","doi":"10.1090/tpms/1201","DOIUrl":null,"url":null,"abstract":"We study one-dimensional stochastic differential equations of the form <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d upper X Subscript t Baseline equals sigma left-parenthesis upper X Subscript t Baseline right-parenthesis d upper Y Subscript t\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">dX_t = \\sigma (X_t)dY_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a suitable Hölder continuous driver such as the fractional Brownian motion <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B Superscript upper H\"> <mml:semantics> <mml:msup> <mml:mi>B</mml:mi> <mml:mi>H</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">B^H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H greater-than one half\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H&gt;\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The innovative aspect of the present paper lies in the assumptions on diffusion coefficients <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which we assume very mild conditions. In particular, we allow <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to have discontinuities, and as such our results can be applied to study equations with discontinuous diffusions.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":"16 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic differential equations with discontinuous diffusion coefficients\",\"authors\":\"Soledad Torres, Lauri Viitasaari\",\"doi\":\"10.1090/tpms/1201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study one-dimensional stochastic differential equations of the form <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d upper X Subscript t Baseline equals sigma left-parenthesis upper X Subscript t Baseline right-parenthesis d upper Y Subscript t\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">dX_t = \\\\sigma (X_t)dY_t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y\\\"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a suitable Hölder continuous driver such as the fractional Brownian motion <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B Superscript upper H\\\"> <mml:semantics> <mml:msup> <mml:mi>B</mml:mi> <mml:mi>H</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">B^H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H greater-than one half\\\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">H&gt;\\\\frac 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The innovative aspect of the present paper lies in the assumptions on diffusion coefficients <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma\\\"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which we assume very mild conditions. In particular, we allow <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma\\\"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to have discontinuities, and as such our results can be applied to study equations with discontinuous diffusions.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了dX t = σ (X t)dY t dX_t = \sigma (X_t)dY_t的一维随机微分方程,其中Y Y是一个合适的Hölder连续驱动器,如分数阶布朗运动B H B^H with H &gt;12 H&gt;\frac本文的创新之处在于对扩散系数σ \sigma的假设,我们假设了非常温和的条件。特别地,我们允许σ \sigma具有不连续,因此我们的结果可以应用于研究具有不连续扩散的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic differential equations with discontinuous diffusion coefficients
We study one-dimensional stochastic differential equations of the form d X t = σ ( X t ) d Y t dX_t = \sigma (X_t)dY_t , where Y Y is a suitable Hölder continuous driver such as the fractional Brownian motion B H B^H with H > 1 2 H>\frac 12 . The innovative aspect of the present paper lies in the assumptions on diffusion coefficients σ \sigma for which we assume very mild conditions. In particular, we allow σ \sigma to have discontinuities, and as such our results can be applied to study equations with discontinuous diffusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信