生成对抗网络(GANs)和目标跟踪(OT)在车辆事故检测中的应用

Taraka Rama Krishna Kanth Kannuri, Kirsnaragavan Arudpiragasam, Klaus Schwarz, Michael Hartmann, Reiner Creutzburg
{"title":"生成对抗网络(GANs)和目标跟踪(OT)在车辆事故检测中的应用","authors":"Taraka Rama Krishna Kanth Kannuri, Kirsnaragavan Arudpiragasam, Klaus Schwarz, Michael Hartmann, Reiner Creutzburg","doi":"10.2352/ei.2023.35.3.mobmu-364","DOIUrl":null,"url":null,"abstract":"Accident detection is one of the biggest challenges as there are various anomalies, occlusions, and objects in the image at different times. Therefore, this paper focuses on detecting traffic accidents through a combination of Object Tracking (OT) and image generation using GAN with variants such as skip connection, residual, and attention connection. The background removal techniques will be applied to reduce the background variation in the frame. Later, YOLO-R is used to detect objects, followed by DeepSort tracking of objects in the frame. Finally, the distance error metric and the adversarial error are determined using the Kalman filter and the GAN approach and help to decide accidents in videos.","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative adversarial networks (GANs) and object tracking (OT) for vehicle accident detection\",\"authors\":\"Taraka Rama Krishna Kanth Kannuri, Kirsnaragavan Arudpiragasam, Klaus Schwarz, Michael Hartmann, Reiner Creutzburg\",\"doi\":\"10.2352/ei.2023.35.3.mobmu-364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accident detection is one of the biggest challenges as there are various anomalies, occlusions, and objects in the image at different times. Therefore, this paper focuses on detecting traffic accidents through a combination of Object Tracking (OT) and image generation using GAN with variants such as skip connection, residual, and attention connection. The background removal techniques will be applied to reduce the background variation in the frame. Later, YOLO-R is used to detect objects, followed by DeepSort tracking of objects in the frame. Finally, the distance error metric and the adversarial error are determined using the Kalman filter and the GAN approach and help to decide accidents in videos.\",\"PeriodicalId\":73514,\"journal\":{\"name\":\"IS&T International Symposium on Electronic Imaging\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IS&T International Symposium on Electronic Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/ei.2023.35.3.mobmu-364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ei.2023.35.3.mobmu-364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

事故检测是最大的挑战之一,因为在不同的时间图像中存在各种异常、遮挡和物体。因此,本文的重点是通过结合目标跟踪(OT)和使用GAN的图像生成来检测交通事故,其中包含跳跃连接、残差和注意连接等变体。背景去除技术将被用于减少背景变化的框架。然后使用YOLO-R对目标进行检测,然后对帧内的目标进行深度排序跟踪。最后,利用卡尔曼滤波和GAN方法确定距离误差度量和对抗误差,以帮助确定视频中的事故。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative adversarial networks (GANs) and object tracking (OT) for vehicle accident detection
Accident detection is one of the biggest challenges as there are various anomalies, occlusions, and objects in the image at different times. Therefore, this paper focuses on detecting traffic accidents through a combination of Object Tracking (OT) and image generation using GAN with variants such as skip connection, residual, and attention connection. The background removal techniques will be applied to reduce the background variation in the frame. Later, YOLO-R is used to detect objects, followed by DeepSort tracking of objects in the frame. Finally, the distance error metric and the adversarial error are determined using the Kalman filter and the GAN approach and help to decide accidents in videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信