非一致性设置中的非偶然性

Pub Date : 2023-01-16 DOI:10.1093/jigpal/jzac081
Daniil Kozhemiachenko, Liubov Vashentseva
{"title":"非一致性设置中的非偶然性","authors":"Daniil Kozhemiachenko, Liubov Vashentseva","doi":"10.1093/jigpal/jzac081","DOIUrl":null,"url":null,"abstract":"Abstract We study an extension of first-degree entailment (FDE) by Dunn and Belnap with a non-contingency operator $\\blacktriangle \\phi $ which is construed as ‘$\\phi $ has the same value in all accessible states’ or ‘all sources give the same information on the truth value of $\\phi $’. We equip this logic dubbed $\\textbf {K}^\\blacktriangle _{\\textbf {FDE}}$ with frame semantics and show how the bi-valued models can be interpreted as interconnected networks of Belnapian databases with the $\\blacktriangle $ operator modelling search for inconsistencies in the provided information. We construct an analytic cut system for the logic and show its soundness and completeness. We prove that $\\blacktriangle $ is not definable via the necessity modality $\\Box $ of $\\textbf {K}_{\\textbf{FDE}}$. Furthermore, we prove that in contrast to the classical non-contingency logic, reflexive, $\\textbf {S4}$ and $\\textbf {S5}$ (among others) frames are definable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-contingency in a Paraconsistent Setting\",\"authors\":\"Daniil Kozhemiachenko, Liubov Vashentseva\",\"doi\":\"10.1093/jigpal/jzac081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study an extension of first-degree entailment (FDE) by Dunn and Belnap with a non-contingency operator $\\\\blacktriangle \\\\phi $ which is construed as ‘$\\\\phi $ has the same value in all accessible states’ or ‘all sources give the same information on the truth value of $\\\\phi $’. We equip this logic dubbed $\\\\textbf {K}^\\\\blacktriangle _{\\\\textbf {FDE}}$ with frame semantics and show how the bi-valued models can be interpreted as interconnected networks of Belnapian databases with the $\\\\blacktriangle $ operator modelling search for inconsistencies in the provided information. We construct an analytic cut system for the logic and show its soundness and completeness. We prove that $\\\\blacktriangle $ is not definable via the necessity modality $\\\\Box $ of $\\\\textbf {K}_{\\\\textbf{FDE}}$. Furthermore, we prove that in contrast to the classical non-contingency logic, reflexive, $\\\\textbf {S4}$ and $\\\\textbf {S5}$ (among others) frames are definable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzac081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzac081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Dunn和Belnap对一级蕴涵(FDE)的扩展,该扩展具有一个非偶然算子$\blacktriangle \phi $,它被解释为“$\phi $在所有可访问状态下具有相同的值”或“所有来源给出关于$\phi $真值的相同信息”。我们为这个名为$\textbf {K}^\blacktriangle _{\textbf {FDE}}$的逻辑配备了框架语义,并展示了双值模型如何被解释为Belnapian数据库的相互连接网络,并使用$\blacktriangle $算子建模搜索所提供信息中的不一致。我们构造了一个逻辑的解析切割系统,并证明了它的完备性。通过$\textbf {K}_{\textbf{FDE}}$的必然模态$\Box $证明了$\blacktriangle $是不可定义的。此外,我们证明了相对于经典的非偶然性逻辑,自反、$\textbf {S4}$和$\textbf {S5}$(以及其他)框架是可定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Non-contingency in a Paraconsistent Setting
Abstract We study an extension of first-degree entailment (FDE) by Dunn and Belnap with a non-contingency operator $\blacktriangle \phi $ which is construed as ‘$\phi $ has the same value in all accessible states’ or ‘all sources give the same information on the truth value of $\phi $’. We equip this logic dubbed $\textbf {K}^\blacktriangle _{\textbf {FDE}}$ with frame semantics and show how the bi-valued models can be interpreted as interconnected networks of Belnapian databases with the $\blacktriangle $ operator modelling search for inconsistencies in the provided information. We construct an analytic cut system for the logic and show its soundness and completeness. We prove that $\blacktriangle $ is not definable via the necessity modality $\Box $ of $\textbf {K}_{\textbf{FDE}}$. Furthermore, we prove that in contrast to the classical non-contingency logic, reflexive, $\textbf {S4}$ and $\textbf {S5}$ (among others) frames are definable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信