非一致性设置中的非偶然性

IF 0.6 4区 数学 Q2 LOGIC
Daniil Kozhemiachenko, Liubov Vashentseva
{"title":"非一致性设置中的非偶然性","authors":"Daniil Kozhemiachenko, Liubov Vashentseva","doi":"10.1093/jigpal/jzac081","DOIUrl":null,"url":null,"abstract":"Abstract We study an extension of first-degree entailment (FDE) by Dunn and Belnap with a non-contingency operator $\\blacktriangle \\phi $ which is construed as ‘$\\phi $ has the same value in all accessible states’ or ‘all sources give the same information on the truth value of $\\phi $’. We equip this logic dubbed $\\textbf {K}^\\blacktriangle _{\\textbf {FDE}}$ with frame semantics and show how the bi-valued models can be interpreted as interconnected networks of Belnapian databases with the $\\blacktriangle $ operator modelling search for inconsistencies in the provided information. We construct an analytic cut system for the logic and show its soundness and completeness. We prove that $\\blacktriangle $ is not definable via the necessity modality $\\Box $ of $\\textbf {K}_{\\textbf{FDE}}$. Furthermore, we prove that in contrast to the classical non-contingency logic, reflexive, $\\textbf {S4}$ and $\\textbf {S5}$ (among others) frames are definable.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"11 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-contingency in a Paraconsistent Setting\",\"authors\":\"Daniil Kozhemiachenko, Liubov Vashentseva\",\"doi\":\"10.1093/jigpal/jzac081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study an extension of first-degree entailment (FDE) by Dunn and Belnap with a non-contingency operator $\\\\blacktriangle \\\\phi $ which is construed as ‘$\\\\phi $ has the same value in all accessible states’ or ‘all sources give the same information on the truth value of $\\\\phi $’. We equip this logic dubbed $\\\\textbf {K}^\\\\blacktriangle _{\\\\textbf {FDE}}$ with frame semantics and show how the bi-valued models can be interpreted as interconnected networks of Belnapian databases with the $\\\\blacktriangle $ operator modelling search for inconsistencies in the provided information. We construct an analytic cut system for the logic and show its soundness and completeness. We prove that $\\\\blacktriangle $ is not definable via the necessity modality $\\\\Box $ of $\\\\textbf {K}_{\\\\textbf{FDE}}$. Furthermore, we prove that in contrast to the classical non-contingency logic, reflexive, $\\\\textbf {S4}$ and $\\\\textbf {S5}$ (among others) frames are definable.\",\"PeriodicalId\":51114,\"journal\":{\"name\":\"Logic Journal of the IGPL\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Journal of the IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzac081\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzac081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Dunn和Belnap对一级蕴涵(FDE)的扩展,该扩展具有一个非偶然算子$\blacktriangle \phi $,它被解释为“$\phi $在所有可访问状态下具有相同的值”或“所有来源给出关于$\phi $真值的相同信息”。我们为这个名为$\textbf {K}^\blacktriangle _{\textbf {FDE}}$的逻辑配备了框架语义,并展示了双值模型如何被解释为Belnapian数据库的相互连接网络,并使用$\blacktriangle $算子建模搜索所提供信息中的不一致。我们构造了一个逻辑的解析切割系统,并证明了它的完备性。通过$\textbf {K}_{\textbf{FDE}}$的必然模态$\Box $证明了$\blacktriangle $是不可定义的。此外,我们证明了相对于经典的非偶然性逻辑,自反、$\textbf {S4}$和$\textbf {S5}$(以及其他)框架是可定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-contingency in a Paraconsistent Setting
Abstract We study an extension of first-degree entailment (FDE) by Dunn and Belnap with a non-contingency operator $\blacktriangle \phi $ which is construed as ‘$\phi $ has the same value in all accessible states’ or ‘all sources give the same information on the truth value of $\phi $’. We equip this logic dubbed $\textbf {K}^\blacktriangle _{\textbf {FDE}}$ with frame semantics and show how the bi-valued models can be interpreted as interconnected networks of Belnapian databases with the $\blacktriangle $ operator modelling search for inconsistencies in the provided information. We construct an analytic cut system for the logic and show its soundness and completeness. We prove that $\blacktriangle $ is not definable via the necessity modality $\Box $ of $\textbf {K}_{\textbf{FDE}}$. Furthermore, we prove that in contrast to the classical non-contingency logic, reflexive, $\textbf {S4}$ and $\textbf {S5}$ (among others) frames are definable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
10.00%
发文量
76
审稿时长
6-12 weeks
期刊介绍: Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering. Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信