带下箭头绑定的混合逻辑的Sahlqvist完备性理论

Pub Date : 2023-01-16 DOI:10.1093/jigpal/jzac079
Zhiguang Zhao
{"title":"带下箭头绑定的混合逻辑的Sahlqvist完备性理论","authors":"Zhiguang Zhao","doi":"10.1093/jigpal/jzac079","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, we continue the research in Zhao (2021, Logic J. IGPL) to develop the Sahlqvist completeness theory for hybrid logic with satisfaction operators and downarrow binders $\\mathcal {L}( @, {\\downarrow })$. We define the class of restricted Sahlqvist formulas for $\\mathcal {L}( @, {\\downarrow })$ following the ideas in Conradie and Robinson (2017, J. Logic Comput., 27, 867–900), but we follow a different proof strategy which is purely proof-theoretic, namely showing that for every restricted Sahlqvist formula $\\varphi $ and its hybrid pure correspondence $\\pi $, $\\textbf {K}_{\\mathcal {H}( @, {\\downarrow })}+\\varphi $ proves $\\pi $; therefore, $\\textbf {K}_{\\mathcal {H}( @, {\\downarrow })}+\\varphi $ is complete with respect to the class of frames defined by $\\pi $, using a modified version $\\textsf {ALBA}^{{\\downarrow }}_{\\textsf {Modified}}$ of the algorithm $\\textsf {ALBA}^{{\\downarrow }}$ defined in Zhao (2021, Logic J. IGPL).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sahlqvist Completeness Theory for Hybrid Logic with Downarrow Binder\",\"authors\":\"Zhiguang Zhao\",\"doi\":\"10.1093/jigpal/jzac079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present paper, we continue the research in Zhao (2021, Logic J. IGPL) to develop the Sahlqvist completeness theory for hybrid logic with satisfaction operators and downarrow binders $\\\\mathcal {L}( @, {\\\\downarrow })$. We define the class of restricted Sahlqvist formulas for $\\\\mathcal {L}( @, {\\\\downarrow })$ following the ideas in Conradie and Robinson (2017, J. Logic Comput., 27, 867–900), but we follow a different proof strategy which is purely proof-theoretic, namely showing that for every restricted Sahlqvist formula $\\\\varphi $ and its hybrid pure correspondence $\\\\pi $, $\\\\textbf {K}_{\\\\mathcal {H}( @, {\\\\downarrow })}+\\\\varphi $ proves $\\\\pi $; therefore, $\\\\textbf {K}_{\\\\mathcal {H}( @, {\\\\downarrow })}+\\\\varphi $ is complete with respect to the class of frames defined by $\\\\pi $, using a modified version $\\\\textsf {ALBA}^{{\\\\downarrow }}_{\\\\textsf {Modified}}$ of the algorithm $\\\\textsf {ALBA}^{{\\\\downarrow }}$ defined in Zhao (2021, Logic J. IGPL).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzac079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzac079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们继续Zhao (2021, Logic J. IGPL)的研究,发展了具有满足算子和下向绑定的混合逻辑的Sahlqvist完备性理论$\mathcal {L}( @, {\downarrow })$。我们根据Conradie和Robinson (2017, J. Logic computer)的思想定义了$\mathcal {L}( @, {\downarrow })$的受限Sahlqvist公式类。, 27,867 - 900),但我们遵循一种不同的证明策略,这是纯粹的证明理论,即表明对于每个受限的Sahlqvist公式$\varphi $及其混合纯对应$\pi $, $\textbf {K}_{\mathcal {H}( @, {\downarrow })}+\varphi $证明$\pi $;因此,对于$\pi $定义的帧类,使用Zhao (2021, Logic J. IGPL)中定义的算法$\textsf {ALBA}^{{\downarrow }}$的修改版本$\textsf {ALBA}^{{\downarrow }}_{\textsf {Modified}}$, $\textbf {K}_{\mathcal {H}( @, {\downarrow })}+\varphi $是完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sahlqvist Completeness Theory for Hybrid Logic with Downarrow Binder
Abstract In the present paper, we continue the research in Zhao (2021, Logic J. IGPL) to develop the Sahlqvist completeness theory for hybrid logic with satisfaction operators and downarrow binders $\mathcal {L}( @, {\downarrow })$. We define the class of restricted Sahlqvist formulas for $\mathcal {L}( @, {\downarrow })$ following the ideas in Conradie and Robinson (2017, J. Logic Comput., 27, 867–900), but we follow a different proof strategy which is purely proof-theoretic, namely showing that for every restricted Sahlqvist formula $\varphi $ and its hybrid pure correspondence $\pi $, $\textbf {K}_{\mathcal {H}( @, {\downarrow })}+\varphi $ proves $\pi $; therefore, $\textbf {K}_{\mathcal {H}( @, {\downarrow })}+\varphi $ is complete with respect to the class of frames defined by $\pi $, using a modified version $\textsf {ALBA}^{{\downarrow }}_{\textsf {Modified}}$ of the algorithm $\textsf {ALBA}^{{\downarrow }}$ defined in Zhao (2021, Logic J. IGPL).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信