有界乘法函数在平均短间隔内具有较高的均匀性

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kaisa Matomäki, Maksym Radziwiłł, Terence Tao, Joni Teräväinen, Tamar Ziegler
{"title":"有界乘法函数在平均短间隔内具有较高的均匀性","authors":"Kaisa Matomäki, Maksym Radziwiłł, Terence Tao, Joni Teräväinen, Tamar Ziegler","doi":"10.4007/annals.2023.197.2.3","DOIUrl":null,"url":null,"abstract":"Let $\\lambda$ denote the Liouville function. We show that, as $X \\rightarrow \\infty$, $$ \\int^{2X}_X \\sup_{\\begin{smallmatrix} P(Y)\\in\\mathbb{R}[Y] \\\\ \\mathrm{deg}{P} \\leq k\\end{smallmatrix}} \\left| \\sum_{x\\leq n \\leq x+H} \\lambda(n) e(-P(n))\\right| \\ dx=o (XH) $$ for all fixed $k$ and $X^{\\theta} \\leq H \\leq X$ with $0 \\lt \\theta \\lt 1$ fixed but arbitrarily small. Previously this was only established for $k \\leq 1$. We obtain this result as a special case of the corresponding statement for (non-pretentious) $1$-bounded multiplicative functions that we prove. In fact, we are able to replace the polynomial phases $e(-P(n))$ by degree $k$ nilsequences $\\overline{F}(g(n) \\Gamma )$. By the inverse theory for the Gowers norms this implies the higher order asymptotic uniformity result $$ \\int_{X}^{2X} \\| \\lambda \\|_{U^{k+1}([x,x+H])}\\ dx = o ( X ) $$ in the same range of $H$. We present applications of this result to patterns of various types in the Liouville sequence. Firstly, we show that the number of sign patterns of the Liouville function is superpolynomial, making progress on a conjecture of Sarnak about the Liouville sequence having positive entropy. Secondly, we obtain cancellation in averages of $\\lambda$ over short polynomial progressions $(n+P_1(m),\\ldots , n+P_k(m))$, which in the case of linear polynomials yields a new averaged version of Chowla's conjecture. We are in fact able to prove our results on polynomial phases in the wider range $H\\geq \\mathrm{exp}((\\mathrm{log} X)^{5/8+\\varepsilon})$, thus strengthening also previous work on the Fourier uniformity of the Liouville function.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Higher uniformity of bounded multiplicative functions in short intervals on average\",\"authors\":\"Kaisa Matomäki, Maksym Radziwiłł, Terence Tao, Joni Teräväinen, Tamar Ziegler\",\"doi\":\"10.4007/annals.2023.197.2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\lambda$ denote the Liouville function. We show that, as $X \\\\rightarrow \\\\infty$, $$ \\\\int^{2X}_X \\\\sup_{\\\\begin{smallmatrix} P(Y)\\\\in\\\\mathbb{R}[Y] \\\\\\\\ \\\\mathrm{deg}{P} \\\\leq k\\\\end{smallmatrix}} \\\\left| \\\\sum_{x\\\\leq n \\\\leq x+H} \\\\lambda(n) e(-P(n))\\\\right| \\\\ dx=o (XH) $$ for all fixed $k$ and $X^{\\\\theta} \\\\leq H \\\\leq X$ with $0 \\\\lt \\\\theta \\\\lt 1$ fixed but arbitrarily small. Previously this was only established for $k \\\\leq 1$. We obtain this result as a special case of the corresponding statement for (non-pretentious) $1$-bounded multiplicative functions that we prove. In fact, we are able to replace the polynomial phases $e(-P(n))$ by degree $k$ nilsequences $\\\\overline{F}(g(n) \\\\Gamma )$. By the inverse theory for the Gowers norms this implies the higher order asymptotic uniformity result $$ \\\\int_{X}^{2X} \\\\| \\\\lambda \\\\|_{U^{k+1}([x,x+H])}\\\\ dx = o ( X ) $$ in the same range of $H$. We present applications of this result to patterns of various types in the Liouville sequence. Firstly, we show that the number of sign patterns of the Liouville function is superpolynomial, making progress on a conjecture of Sarnak about the Liouville sequence having positive entropy. Secondly, we obtain cancellation in averages of $\\\\lambda$ over short polynomial progressions $(n+P_1(m),\\\\ldots , n+P_k(m))$, which in the case of linear polynomials yields a new averaged version of Chowla's conjecture. We are in fact able to prove our results on polynomial phases in the wider range $H\\\\geq \\\\mathrm{exp}((\\\\mathrm{log} X)^{5/8+\\\\varepsilon})$, thus strengthening also previous work on the Fourier uniformity of the Liouville function.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2023.197.2.3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4007/annals.2023.197.2.3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

设$\lambda$表示Liouville函数。我们表明,$X \rightarrow \infty$, $$ \int^{2X}_X \sup_{\begin{smallmatrix} P(Y)\in\mathbb{R}[Y] \\ \mathrm{deg}{P} \leq k\end{smallmatrix}} \left| \sum_{x\leq n \leq x+H} \lambda(n) e(-P(n))\right| \ dx=o (XH) $$对于所有固定的$k$和$X^{\theta} \leq H \leq X$, $0 \lt \theta \lt 1$固定但任意小。以前,这只是为$k \leq 1$建立的。作为我们所证明的(非自命不凡的)$1$有界乘法函数的相应命题的特例,我们得到了这个结果。事实上,我们可以用次$k$ nilsequences $\overline{F}(g(n) \Gamma )$来代替多项式相位$e(-P(n))$。通过Gowers范数的逆理论,这意味着在$H$的相同范围内的高阶渐近均匀性结果$$ \int_{X}^{2X} \| \lambda \|_{U^{k+1}([x,x+H])}\ dx = o ( X ) $$。我们将这一结果应用于Liouville序列中各种类型的模式。首先,我们证明了Liouville函数的符号模式的数目是一个超多项式,进一步证明了Sarnak关于Liouville序列具有正熵的猜想。其次,我们得到了在短多项式级数$(n+P_1(m),\ldots , n+P_k(m))$上$\lambda$的平均值的消去,这在线性多项式的情况下产生了Chowla猜想的一个新的平均版本。事实上,我们能够在更广泛的多项式相位上证明我们的结果$H\geq \mathrm{exp}((\mathrm{log} X)^{5/8+\varepsilon})$,从而也加强了以前关于Liouville函数的傅里叶均匀性的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher uniformity of bounded multiplicative functions in short intervals on average
Let $\lambda$ denote the Liouville function. We show that, as $X \rightarrow \infty$, $$ \int^{2X}_X \sup_{\begin{smallmatrix} P(Y)\in\mathbb{R}[Y] \\ \mathrm{deg}{P} \leq k\end{smallmatrix}} \left| \sum_{x\leq n \leq x+H} \lambda(n) e(-P(n))\right| \ dx=o (XH) $$ for all fixed $k$ and $X^{\theta} \leq H \leq X$ with $0 \lt \theta \lt 1$ fixed but arbitrarily small. Previously this was only established for $k \leq 1$. We obtain this result as a special case of the corresponding statement for (non-pretentious) $1$-bounded multiplicative functions that we prove. In fact, we are able to replace the polynomial phases $e(-P(n))$ by degree $k$ nilsequences $\overline{F}(g(n) \Gamma )$. By the inverse theory for the Gowers norms this implies the higher order asymptotic uniformity result $$ \int_{X}^{2X} \| \lambda \|_{U^{k+1}([x,x+H])}\ dx = o ( X ) $$ in the same range of $H$. We present applications of this result to patterns of various types in the Liouville sequence. Firstly, we show that the number of sign patterns of the Liouville function is superpolynomial, making progress on a conjecture of Sarnak about the Liouville sequence having positive entropy. Secondly, we obtain cancellation in averages of $\lambda$ over short polynomial progressions $(n+P_1(m),\ldots , n+P_k(m))$, which in the case of linear polynomials yields a new averaged version of Chowla's conjecture. We are in fact able to prove our results on polynomial phases in the wider range $H\geq \mathrm{exp}((\mathrm{log} X)^{5/8+\varepsilon})$, thus strengthening also previous work on the Fourier uniformity of the Liouville function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信