代表性体积元方法中的偏差:周期化集成而非其实现

IF 2.5 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Nicolas Clozeau, Marc Josien, Felix Otto, Qiang Xu
{"title":"代表性体积元方法中的偏差:周期化集成而非其实现","authors":"Nicolas Clozeau, Marc Josien, Felix Otto, Qiang Xu","doi":"10.1007/s10208-023-09613-y","DOIUrl":null,"url":null,"abstract":"Abstract We study the representative volume element (RVE) method, which is a method to approximately infer the effective behavior $$a_{\\textrm{hom}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>a</mml:mi> <mml:mtext>hom</mml:mtext> </mml:msub> </mml:math> of a stationary random medium. The latter is described by a coefficient field a ( x ) generated from a given ensemble $$\\langle \\cdot \\rangle $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> and the corresponding linear elliptic operator $$-\\nabla \\cdot a\\nabla $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>∇</mml:mi> <mml:mo>·</mml:mo> <mml:mi>a</mml:mi> <mml:mi>∇</mml:mi> </mml:mrow> </mml:math> . In line with the theory of homogenization, the method proceeds by computing $$d=3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> correctors ( d denoting the space dimension). To be numerically tractable, this computation has to be done on a finite domain: the so-called representative volume element, i.e., a large box with, say, periodic boundary conditions. The main message of this article is: Periodize the ensemble instead of its realizations. By this, we mean that it is better to sample from a suitably periodized ensemble than to periodically extend the restriction of a realization a ( x ) from the whole-space ensemble $$\\langle \\cdot \\rangle $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> . We make this point by investigating the bias (or systematic error), i.e., the difference between $$a_{\\textrm{hom}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>a</mml:mi> <mml:mtext>hom</mml:mtext> </mml:msub> </mml:math> and the expected value of the RVE method, in terms of its scaling w.r.t. the lateral size L of the box. In case of periodizing a ( x ), we heuristically argue that this error is generically $$O(L^{-1})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . In case of a suitable periodization of $$\\langle \\cdot \\rangle $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> , we rigorously show that it is $$O(L^{-d})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . In fact, we give a characterization of the leading-order error term for both strategies and argue that even in the isotropic case it is generically non-degenerate. We carry out the rigorous analysis in the convenient setting of ensembles $$\\langle \\cdot \\rangle $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> of Gaussian type, which allow for a straightforward periodization, passing via the (integrable) covariance function. This setting has also the advantage of making the Price theorem and the Malliavin calculus available for optimal stochastic estimates of correctors. We actually need control of second-order correctors to capture the leading-order error term. This is due to inversion symmetry when applying the two-scale expansion to the Green function. As a bonus, we present a stream-lined strategy to estimate the error in a higher-order two-scale expansion of the Green function.","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"43 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias in the Representative Volume Element method: Periodize the Ensemble Instead of Its Realizations\",\"authors\":\"Nicolas Clozeau, Marc Josien, Felix Otto, Qiang Xu\",\"doi\":\"10.1007/s10208-023-09613-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the representative volume element (RVE) method, which is a method to approximately infer the effective behavior $$a_{\\\\textrm{hom}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>a</mml:mi> <mml:mtext>hom</mml:mtext> </mml:msub> </mml:math> of a stationary random medium. The latter is described by a coefficient field a ( x ) generated from a given ensemble $$\\\\langle \\\\cdot \\\\rangle $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> and the corresponding linear elliptic operator $$-\\\\nabla \\\\cdot a\\\\nabla $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>∇</mml:mi> <mml:mo>·</mml:mo> <mml:mi>a</mml:mi> <mml:mi>∇</mml:mi> </mml:mrow> </mml:math> . In line with the theory of homogenization, the method proceeds by computing $$d=3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> correctors ( d denoting the space dimension). To be numerically tractable, this computation has to be done on a finite domain: the so-called representative volume element, i.e., a large box with, say, periodic boundary conditions. The main message of this article is: Periodize the ensemble instead of its realizations. By this, we mean that it is better to sample from a suitably periodized ensemble than to periodically extend the restriction of a realization a ( x ) from the whole-space ensemble $$\\\\langle \\\\cdot \\\\rangle $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> . We make this point by investigating the bias (or systematic error), i.e., the difference between $$a_{\\\\textrm{hom}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>a</mml:mi> <mml:mtext>hom</mml:mtext> </mml:msub> </mml:math> and the expected value of the RVE method, in terms of its scaling w.r.t. the lateral size L of the box. In case of periodizing a ( x ), we heuristically argue that this error is generically $$O(L^{-1})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . In case of a suitable periodization of $$\\\\langle \\\\cdot \\\\rangle $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> , we rigorously show that it is $$O(L^{-d})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . In fact, we give a characterization of the leading-order error term for both strategies and argue that even in the isotropic case it is generically non-degenerate. We carry out the rigorous analysis in the convenient setting of ensembles $$\\\\langle \\\\cdot \\\\rangle $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>⟨</mml:mo> <mml:mo>·</mml:mo> <mml:mo>⟩</mml:mo> </mml:mrow> </mml:math> of Gaussian type, which allow for a straightforward periodization, passing via the (integrable) covariance function. This setting has also the advantage of making the Price theorem and the Malliavin calculus available for optimal stochastic estimates of correctors. We actually need control of second-order correctors to capture the leading-order error term. This is due to inversion symmetry when applying the two-scale expansion to the Green function. As a bonus, we present a stream-lined strategy to estimate the error in a higher-order two-scale expansion of the Green function.\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-023-09613-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10208-023-09613-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了代表性体积元(RVE)方法,它是一种近似推断平稳随机介质的有效行为$$a_{\textrm{hom}}$$ a home的方法。后者由一个给定集合$$\langle \cdot \rangle $$⟨·⟩和相应的线性椭圆算子$$-\nabla \cdot a\nabla $$ -∇·a∇生成的系数场a (x)来描述。根据均匀化理论,该方法首先计算$$d=3$$ d = 3个校正量(d表示空间维度)。为了在数值上易于处理,这种计算必须在有限域中完成:即所谓的代表性体积元素,即具有周期性边界条件的大盒子。本文的主要信息是:将集成周期化,而不是将其实现周期化。通过这一点,我们的意思是,从一个适当的周期化的集合中采样比从整个空间集合$$\langle \cdot \rangle $$⟨·⟩中周期性地扩展实现a (x)的限制更好。我们通过研究偏差(或系统误差)来提出这一点,即$$a_{\textrm{hom}}$$ a home与RVE方法的期望值之间的差异,根据其缩放w.r.t.盒子的横向大小L。在周期化a (x)的情况下,我们启发式地认为该误差一般为$$O(L^{-1})$$ O (L - 1)。在$$\langle \cdot \rangle $$⟨·⟩的合适周期化的情况下,我们严格地表明它是$$O(L^{-d})$$ O (L - d)。事实上,我们给出了两种策略的首阶误差项的特征,并论证了即使在各向同性情况下,它也是一般非简并的。我们在高斯型的合集$$\langle \cdot \rangle $$⟨·⟩的方便设置中进行严格的分析,它允许通过(可积的)协方差函数进行直接的周期化。这种设置还具有使Price定理和Malliavin演算可用于校正量的最优随机估计的优点。我们实际上需要控制二阶校正器来捕获前阶误差项。这是由于对格林函数应用双尺度展开时的反演对称性。作为奖励,我们提出了一种流线策略来估计格林函数的高阶双尺度展开中的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bias in the Representative Volume Element method: Periodize the Ensemble Instead of Its Realizations

Bias in the Representative Volume Element method: Periodize the Ensemble Instead of Its Realizations
Abstract We study the representative volume element (RVE) method, which is a method to approximately infer the effective behavior $$a_{\textrm{hom}}$$ a hom of a stationary random medium. The latter is described by a coefficient field a ( x ) generated from a given ensemble $$\langle \cdot \rangle $$ · and the corresponding linear elliptic operator $$-\nabla \cdot a\nabla $$ - · a . In line with the theory of homogenization, the method proceeds by computing $$d=3$$ d = 3 correctors ( d denoting the space dimension). To be numerically tractable, this computation has to be done on a finite domain: the so-called representative volume element, i.e., a large box with, say, periodic boundary conditions. The main message of this article is: Periodize the ensemble instead of its realizations. By this, we mean that it is better to sample from a suitably periodized ensemble than to periodically extend the restriction of a realization a ( x ) from the whole-space ensemble $$\langle \cdot \rangle $$ · . We make this point by investigating the bias (or systematic error), i.e., the difference between $$a_{\textrm{hom}}$$ a hom and the expected value of the RVE method, in terms of its scaling w.r.t. the lateral size L of the box. In case of periodizing a ( x ), we heuristically argue that this error is generically $$O(L^{-1})$$ O ( L - 1 ) . In case of a suitable periodization of $$\langle \cdot \rangle $$ · , we rigorously show that it is $$O(L^{-d})$$ O ( L - d ) . In fact, we give a characterization of the leading-order error term for both strategies and argue that even in the isotropic case it is generically non-degenerate. We carry out the rigorous analysis in the convenient setting of ensembles $$\langle \cdot \rangle $$ · of Gaussian type, which allow for a straightforward periodization, passing via the (integrable) covariance function. This setting has also the advantage of making the Price theorem and the Malliavin calculus available for optimal stochastic estimates of correctors. We actually need control of second-order correctors to capture the leading-order error term. This is due to inversion symmetry when applying the two-scale expansion to the Green function. As a bonus, we present a stream-lined strategy to estimate the error in a higher-order two-scale expansion of the Green function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信