人工智能方法预测蔗渣灰处理软粘土抗剪强度

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
Rufaizal Che Mamat, Azuin Ramli, Sri Atmaja P. Rosyidi
{"title":"人工智能方法预测蔗渣灰处理软粘土抗剪强度","authors":"Rufaizal Che Mamat, Azuin Ramli, Sri Atmaja P. Rosyidi","doi":"10.17576/jkukm-2023-35(3)-07","DOIUrl":null,"url":null,"abstract":"Soil shear strength is an essential engineering characteristic used in designing and evaluating geotechnical structures. In this study, we intend to analyse and compare the performance of the Genetic Algorithm - Adaptive Network-based Fuzzy Inference System (GANFIS) and Artificial Neural Networks (ANN) in predicting the strength of soft clay. Case studies of 144 soft clay soil samples from Sarang Buaya, Semerah, Malaysia, were utilised to generate training and testing datasets for developing and validating models. RMSE and R have been employed to validate and compare the models. The GANFIS has the highest prediction capability (RMSE=0.042 and R=0.850), while the ANN has the lowest (RMSE=0.065 and R=0.49). From a comparison of the two models, it can be stated that GANFIS is the most promising technique for predicting the strength of soft clay.","PeriodicalId":17688,"journal":{"name":"Jurnal Kejuruteraan","volume":"301 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear Strength Prediction of Treated Soft Clay with Sugarcane Bagasse Ash Using Artificial Intelligence Methods\",\"authors\":\"Rufaizal Che Mamat, Azuin Ramli, Sri Atmaja P. Rosyidi\",\"doi\":\"10.17576/jkukm-2023-35(3)-07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil shear strength is an essential engineering characteristic used in designing and evaluating geotechnical structures. In this study, we intend to analyse and compare the performance of the Genetic Algorithm - Adaptive Network-based Fuzzy Inference System (GANFIS) and Artificial Neural Networks (ANN) in predicting the strength of soft clay. Case studies of 144 soft clay soil samples from Sarang Buaya, Semerah, Malaysia, were utilised to generate training and testing datasets for developing and validating models. RMSE and R have been employed to validate and compare the models. The GANFIS has the highest prediction capability (RMSE=0.042 and R=0.850), while the ANN has the lowest (RMSE=0.065 and R=0.49). From a comparison of the two models, it can be stated that GANFIS is the most promising technique for predicting the strength of soft clay.\",\"PeriodicalId\":17688,\"journal\":{\"name\":\"Jurnal Kejuruteraan\",\"volume\":\"301 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kejuruteraan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17576/jkukm-2023-35(3)-07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kejuruteraan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17576/jkukm-2023-35(3)-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

土抗剪强度是岩土结构设计和评价中必不可少的工程特性。在这项研究中,我们打算分析和比较遗传算法-基于自适应网络的模糊推理系统(GANFIS)和人工神经网络(ANN)在预测软粘土强度方面的性能。利用来自马来西亚塞美拉州Sarang Buaya的144个软粘土样本的案例研究,生成用于开发和验证模型的训练和测试数据集。采用RMSE和R对模型进行验证和比较。GANFIS的预测能力最强(RMSE=0.042, R=0.850),而ANN的预测能力最低(RMSE=0.065, R=0.49)。两种模型的对比表明,GANFIS是软土强度预测最具应用前景的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shear Strength Prediction of Treated Soft Clay with Sugarcane Bagasse Ash Using Artificial Intelligence Methods
Soil shear strength is an essential engineering characteristic used in designing and evaluating geotechnical structures. In this study, we intend to analyse and compare the performance of the Genetic Algorithm - Adaptive Network-based Fuzzy Inference System (GANFIS) and Artificial Neural Networks (ANN) in predicting the strength of soft clay. Case studies of 144 soft clay soil samples from Sarang Buaya, Semerah, Malaysia, were utilised to generate training and testing datasets for developing and validating models. RMSE and R have been employed to validate and compare the models. The GANFIS has the highest prediction capability (RMSE=0.042 and R=0.850), while the ANN has the lowest (RMSE=0.065 and R=0.49). From a comparison of the two models, it can be stated that GANFIS is the most promising technique for predicting the strength of soft clay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jurnal Kejuruteraan
Jurnal Kejuruteraan ENGINEERING, MULTIDISCIPLINARY-
自引率
16.70%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信