Catherina M. Bijang, Nurani Hasanela, Shielda N. Joris, Eirene G. Fransina, Tahril Tahril, Thamrin Azis, Ahmadin Tehuayo
{"title":"利用甘达里亚种子生物反应器合成纳米银","authors":"Catherina M. Bijang, Nurani Hasanela, Shielda N. Joris, Eirene G. Fransina, Tahril Tahril, Thamrin Azis, Ahmadin Tehuayo","doi":"10.22487/j24775185.2023.v12.i2.pp142-148","DOIUrl":null,"url":null,"abstract":"The silver nanoparticles (NPP) are synthesized with the chemical reduction method by using a water extract bioreductor of gandaria seed (Bouea macrophylla G.) which acts as a reducing precursor, in this case, AgNO3 Ag+ is reduced to AgO. The concentration of AgNO3 is made between 0.5 mm and 1 mm. The characteristic of NPP is unstable, so a modification is needed with and without the addition of PVA 1 %. The process of NPP shaping is monitored by observing the uptaken of UV - Vis when the color changes occur. The high NPP concentration of AgNO3 has higher absorbance and is wider if compared to the lower AgNO3 concentration. The result of this research based on the absorbance value and the wavelength showed the NPP synthesized without the addition of PVA 1 % (b/v) is wider. The addition of PVA 1 % (b/v) provides better stability and maintains the absorbance of spectrum changes from day to day. The maximum uptaken of UV-Vis from NPP AgNO3 0.5 mm by using green synthesis and 1 mm without adding PVA are 0.946 and 0.980, respectively. However, NPP with the addition of PVA has 0.968 and 0.978 absorbance. The best concentration of NPP produced was 1 mm AgNO3.","PeriodicalId":17695,"journal":{"name":"Jurnal Akademika Kimia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Silver Nanoparticles using Gandaria Seeds Bioreductor\",\"authors\":\"Catherina M. Bijang, Nurani Hasanela, Shielda N. Joris, Eirene G. Fransina, Tahril Tahril, Thamrin Azis, Ahmadin Tehuayo\",\"doi\":\"10.22487/j24775185.2023.v12.i2.pp142-148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The silver nanoparticles (NPP) are synthesized with the chemical reduction method by using a water extract bioreductor of gandaria seed (Bouea macrophylla G.) which acts as a reducing precursor, in this case, AgNO3 Ag+ is reduced to AgO. The concentration of AgNO3 is made between 0.5 mm and 1 mm. The characteristic of NPP is unstable, so a modification is needed with and without the addition of PVA 1 %. The process of NPP shaping is monitored by observing the uptaken of UV - Vis when the color changes occur. The high NPP concentration of AgNO3 has higher absorbance and is wider if compared to the lower AgNO3 concentration. The result of this research based on the absorbance value and the wavelength showed the NPP synthesized without the addition of PVA 1 % (b/v) is wider. The addition of PVA 1 % (b/v) provides better stability and maintains the absorbance of spectrum changes from day to day. The maximum uptaken of UV-Vis from NPP AgNO3 0.5 mm by using green synthesis and 1 mm without adding PVA are 0.946 and 0.980, respectively. However, NPP with the addition of PVA has 0.968 and 0.978 absorbance. The best concentration of NPP produced was 1 mm AgNO3.\",\"PeriodicalId\":17695,\"journal\":{\"name\":\"Jurnal Akademika Kimia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Akademika Kimia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22487/j24775185.2023.v12.i2.pp142-148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Akademika Kimia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22487/j24775185.2023.v12.i2.pp142-148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
以甘达里籽(Bouea macrophylla G.)水提生物还原剂为还原前体,采用化学还原法制备了纳米银(NPP), AgNO3 Ag+被还原为AgO。AgNO3的浓度在0.5 mm到1mm之间。NPP的特性不稳定,在添加和不添加1% PVA的情况下需要进行改性。当颜色发生变化时,通过观察UV - Vis的吸收来监测NPP成型过程。高NPP浓度的AgNO3比低浓度的AgNO3具有更高的吸光度和更宽的吸光度。基于吸光度值和波长的研究结果表明,不添加PVA 1% (b/v)合成的NPP更宽。添加1% (b/v)的PVA提供了更好的稳定性,并保持了光谱每天变化的吸光度。绿色合成和不添加PVA的1 mm NPP AgNO3对UV-Vis的最大吸收率分别为0.946和0.980。而添加PVA的NPP吸光度分别为0.968和0.978。生产NPP的最佳浓度为1 mm AgNO3。
Synthesis of Silver Nanoparticles using Gandaria Seeds Bioreductor
The silver nanoparticles (NPP) are synthesized with the chemical reduction method by using a water extract bioreductor of gandaria seed (Bouea macrophylla G.) which acts as a reducing precursor, in this case, AgNO3 Ag+ is reduced to AgO. The concentration of AgNO3 is made between 0.5 mm and 1 mm. The characteristic of NPP is unstable, so a modification is needed with and without the addition of PVA 1 %. The process of NPP shaping is monitored by observing the uptaken of UV - Vis when the color changes occur. The high NPP concentration of AgNO3 has higher absorbance and is wider if compared to the lower AgNO3 concentration. The result of this research based on the absorbance value and the wavelength showed the NPP synthesized without the addition of PVA 1 % (b/v) is wider. The addition of PVA 1 % (b/v) provides better stability and maintains the absorbance of spectrum changes from day to day. The maximum uptaken of UV-Vis from NPP AgNO3 0.5 mm by using green synthesis and 1 mm without adding PVA are 0.946 and 0.980, respectively. However, NPP with the addition of PVA has 0.968 and 0.978 absorbance. The best concentration of NPP produced was 1 mm AgNO3.