某示范能源桩挡土墙的现场调查

IF 3 3区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Yu Zhong, Guillermo Narsilio, Nikolas Makasis, Luis Villegas
{"title":"某示范能源桩挡土墙的现场调查","authors":"Yu Zhong, Guillermo Narsilio, Nikolas Makasis, Luis Villegas","doi":"10.1139/cgj-2023-0054","DOIUrl":null,"url":null,"abstract":"This article presents the thermal and thermo-mechanical responses of a pilot energy wall located in Melbourne, Australia, believed to be one of the first instrumented energy soldier piled walls in the world. The full-scale field thermal and thermo-mechanical conditions of the wall have been monitored during the period of a full-cycle thermal response test (TRT) conducted on a single soldier pile over two months. The monitored pile and ground temperature responses reveal the significance of the thermal condition in the excavated space on the thermal performance of such energy geostructures, which increases complexities in design and analysis. Furthermore, this study reports the profiles of axial strains and induced thermal stresses in the tested soldier pile, demonstrating how the applied thermal load from the TRT influenced the mechanical performance of the pile and wall and how the restrictive action of the support elements controlled the induced conditions. Here we show that soldier pile responds differently from energy piles or borehole heat exchangers, however residual axial strains were minimal and similar to those reported in energy piles foundations due to a thermo-elastic response to the imposed thermal loads and wall rigidity. Finally, the unique experimental dataset is made available for further studies.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"111 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field investigation on a pilot energy piled retaining wall\",\"authors\":\"Yu Zhong, Guillermo Narsilio, Nikolas Makasis, Luis Villegas\",\"doi\":\"10.1139/cgj-2023-0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the thermal and thermo-mechanical responses of a pilot energy wall located in Melbourne, Australia, believed to be one of the first instrumented energy soldier piled walls in the world. The full-scale field thermal and thermo-mechanical conditions of the wall have been monitored during the period of a full-cycle thermal response test (TRT) conducted on a single soldier pile over two months. The monitored pile and ground temperature responses reveal the significance of the thermal condition in the excavated space on the thermal performance of such energy geostructures, which increases complexities in design and analysis. Furthermore, this study reports the profiles of axial strains and induced thermal stresses in the tested soldier pile, demonstrating how the applied thermal load from the TRT influenced the mechanical performance of the pile and wall and how the restrictive action of the support elements controlled the induced conditions. Here we show that soldier pile responds differently from energy piles or borehole heat exchangers, however residual axial strains were minimal and similar to those reported in energy piles foundations due to a thermo-elastic response to the imposed thermal loads and wall rigidity. Finally, the unique experimental dataset is made available for further studies.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0054\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了位于澳大利亚墨尔本的一个试点能源墙的热和热力学响应,该墙被认为是世界上第一个仪器化的能源士兵堆墙之一。在对单个士兵桩进行为期两个多月的全周期热响应测试(TRT)期间,对墙体的全尺寸现场热和热力学条件进行了监测。监测到的桩温和地温响应揭示了开挖空间热条件对此类节能土工结构热性能的重要影响,这增加了设计和分析的复杂性。此外,本研究报告了测试士兵桩的轴向应变和诱导热应力分布,展示了来自TRT的外加热载荷如何影响桩和墙的力学性能,以及支撑元件的限制作用如何控制诱导条件。在这里,我们表明士兵桩的响应不同于能源桩或钻孔热交换器,然而,由于对施加的热载荷和墙体刚度的热弹性响应,剩余轴向应变最小,与能源桩基础相似。最后,为进一步的研究提供了独特的实验数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field investigation on a pilot energy piled retaining wall
This article presents the thermal and thermo-mechanical responses of a pilot energy wall located in Melbourne, Australia, believed to be one of the first instrumented energy soldier piled walls in the world. The full-scale field thermal and thermo-mechanical conditions of the wall have been monitored during the period of a full-cycle thermal response test (TRT) conducted on a single soldier pile over two months. The monitored pile and ground temperature responses reveal the significance of the thermal condition in the excavated space on the thermal performance of such energy geostructures, which increases complexities in design and analysis. Furthermore, this study reports the profiles of axial strains and induced thermal stresses in the tested soldier pile, demonstrating how the applied thermal load from the TRT influenced the mechanical performance of the pile and wall and how the restrictive action of the support elements controlled the induced conditions. Here we show that soldier pile responds differently from energy piles or borehole heat exchangers, however residual axial strains were minimal and similar to those reported in energy piles foundations due to a thermo-elastic response to the imposed thermal loads and wall rigidity. Finally, the unique experimental dataset is made available for further studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Geotechnical Journal
Canadian Geotechnical Journal 地学-地球科学综合
CiteScore
7.20
自引率
5.60%
发文量
163
审稿时长
7.5 months
期刊介绍: The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling. Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信