经典风险模型中广义再保险的赔付优化

IF 1.4 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS
Leonie Violetta Brinker, Hanspeter Schmidli
{"title":"经典风险模型中广义再保险的赔付优化","authors":"Leonie Violetta Brinker, Hanspeter Schmidli","doi":"10.1007/s10203-023-00402-4","DOIUrl":null,"url":null,"abstract":"Abstract We consider a Cramér–Lundberg model representing the surplus of an insurance company under a general reinsurance control process. We aim to minimise the expected time during which the surplus is bounded away from its own running maximum by at least $$d&gt;0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> (discounted at a preference rate $$\\delta &gt;0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>δ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> ) by choosing a reinsurance strategy. By analysing the drawdown process (i.e. the absolute distance of the controlled surplus model to its maximum) directly, we prove that the value function fulfils the corresponding Hamilton–Jacobi–Bellman equation and show how one can calculate the value function and the optimal strategy. If the initial drawdown is critically large, the problem corresponds to the maximisation of the Laplace transform of a passage time. We show that a constant retention level is optimal. If the drawdown is smaller than d , the problem can be expressed as an element of a set of Gerber–Shiu optimisation problems. We show how these problems can be solved and that the optimal strategy is of feedback form. We illustrate the theory by examples of the cases of light and heavy tailed claims.","PeriodicalId":43711,"journal":{"name":"Decisions in Economics and Finance","volume":"19 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of drawdowns by generalised reinsurance in the classical risk model\",\"authors\":\"Leonie Violetta Brinker, Hanspeter Schmidli\",\"doi\":\"10.1007/s10203-023-00402-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a Cramér–Lundberg model representing the surplus of an insurance company under a general reinsurance control process. We aim to minimise the expected time during which the surplus is bounded away from its own running maximum by at least $$d&gt;0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> (discounted at a preference rate $$\\\\delta &gt;0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>δ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> ) by choosing a reinsurance strategy. By analysing the drawdown process (i.e. the absolute distance of the controlled surplus model to its maximum) directly, we prove that the value function fulfils the corresponding Hamilton–Jacobi–Bellman equation and show how one can calculate the value function and the optimal strategy. If the initial drawdown is critically large, the problem corresponds to the maximisation of the Laplace transform of a passage time. We show that a constant retention level is optimal. If the drawdown is smaller than d , the problem can be expressed as an element of a set of Gerber–Shiu optimisation problems. We show how these problems can be solved and that the optimal strategy is of feedback form. We illustrate the theory by examples of the cases of light and heavy tailed claims.\",\"PeriodicalId\":43711,\"journal\":{\"name\":\"Decisions in Economics and Finance\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decisions in Economics and Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10203-023-00402-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decisions in Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10203-023-00402-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑一般再保险控制过程下保险公司盈余的cram r - lundberg模型。我们的目标是使盈余偏离其自身运行最大值的预期时间至少缩短$$d>0$$ d &gt;0(以优惠率贴现$$\delta >0$$ δ &gt;0)通过选择再保险策略。通过直接分析收缩过程(即控制盈余模型到其最大值的绝对距离),我们证明了价值函数满足相应的Hamilton-Jacobi-Bellman方程,并展示了如何计算价值函数和最优策略。如果初始衰减非常大,则问题对应于一段时间的拉普拉斯变换的最大化。我们表明,恒定的留存水平是最理想的。如果收缩小于d,则问题可以表示为一组Gerber-Shiu优化问题的一个元素。我们展示了如何解决这些问题,以及最优策略是反馈形式。我们通过轻尾索赔和重尾索赔的案例来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimisation of drawdowns by generalised reinsurance in the classical risk model

Optimisation of drawdowns by generalised reinsurance in the classical risk model
Abstract We consider a Cramér–Lundberg model representing the surplus of an insurance company under a general reinsurance control process. We aim to minimise the expected time during which the surplus is bounded away from its own running maximum by at least $$d>0$$ d > 0 (discounted at a preference rate $$\delta >0$$ δ > 0 ) by choosing a reinsurance strategy. By analysing the drawdown process (i.e. the absolute distance of the controlled surplus model to its maximum) directly, we prove that the value function fulfils the corresponding Hamilton–Jacobi–Bellman equation and show how one can calculate the value function and the optimal strategy. If the initial drawdown is critically large, the problem corresponds to the maximisation of the Laplace transform of a passage time. We show that a constant retention level is optimal. If the drawdown is smaller than d , the problem can be expressed as an element of a set of Gerber–Shiu optimisation problems. We show how these problems can be solved and that the optimal strategy is of feedback form. We illustrate the theory by examples of the cases of light and heavy tailed claims.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decisions in Economics and Finance
Decisions in Economics and Finance SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
2.50
自引率
9.10%
发文量
10
期刊介绍: Decisions in Economics and Finance: A Journal of Applied Mathematics is the official publication of the Association for Mathematics Applied to Social and Economic Sciences (AMASES). It provides a specialised forum for the publication of research in all areas of mathematics as applied to economics, finance, insurance, management and social sciences. Primary emphasis is placed on original research concerning topics in mathematics or computational techniques which are explicitly motivated by or contribute to the analysis of economic or financial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信