{"title":"SnBi2Te4-PbBi2Te4-Bi2Te3体系300 K固相平衡的实验研究","authors":"A.I. Aghazade, E.N. Orujlu, Z.E. Salimov, A.N. Mammadov, M.B. Babanly","doi":"10.15330/pcss.24.3.453-459","DOIUrl":null,"url":null,"abstract":"The phase equilibria of the SnBi2Te4-PbBi2Te4-Bi2Te3 system were experimentally studied using differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. According to the experimental results, the isothermal section of the system at 300 K were constructed and 4 single-phase and 3 two-phase regions were identified. It was shown that along with previously confirmed SnBi2Te4–PbBi2Te4 and SnBi4Te7–PbBi4Te7 sections, SnBi6Te10–PbBi6Te10 section forms continuous series of solid solutions with a tetradymite-type layered structure. Lattice parameters of solid solutions were determined by full-profile Rietveld refinements and results show that both a and c parameters increase linearly with the Pb concentration according to Vegard's law. This study can help elucidate the phase equilibria of the SnTe-PbTe-Bi2Te3 pseudo-ternary system which provides important information for the design of new tetradymite-type layered phases with topological insulator and thermoelectric properties.","PeriodicalId":20137,"journal":{"name":"Physics and Chemistry of Solid State","volume":"45 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of the solid phase equilibria at 300 K in the SnBi2Te4-PbBi2Te4-Bi2Te3 system\",\"authors\":\"A.I. Aghazade, E.N. Orujlu, Z.E. Salimov, A.N. Mammadov, M.B. Babanly\",\"doi\":\"10.15330/pcss.24.3.453-459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phase equilibria of the SnBi2Te4-PbBi2Te4-Bi2Te3 system were experimentally studied using differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. According to the experimental results, the isothermal section of the system at 300 K were constructed and 4 single-phase and 3 two-phase regions were identified. It was shown that along with previously confirmed SnBi2Te4–PbBi2Te4 and SnBi4Te7–PbBi4Te7 sections, SnBi6Te10–PbBi6Te10 section forms continuous series of solid solutions with a tetradymite-type layered structure. Lattice parameters of solid solutions were determined by full-profile Rietveld refinements and results show that both a and c parameters increase linearly with the Pb concentration according to Vegard's law. This study can help elucidate the phase equilibria of the SnTe-PbTe-Bi2Te3 pseudo-ternary system which provides important information for the design of new tetradymite-type layered phases with topological insulator and thermoelectric properties.\",\"PeriodicalId\":20137,\"journal\":{\"name\":\"Physics and Chemistry of Solid State\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Solid State\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/pcss.24.3.453-459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.24.3.453-459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental investigation of the solid phase equilibria at 300 K in the SnBi2Te4-PbBi2Te4-Bi2Te3 system
The phase equilibria of the SnBi2Te4-PbBi2Te4-Bi2Te3 system were experimentally studied using differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. According to the experimental results, the isothermal section of the system at 300 K were constructed and 4 single-phase and 3 two-phase regions were identified. It was shown that along with previously confirmed SnBi2Te4–PbBi2Te4 and SnBi4Te7–PbBi4Te7 sections, SnBi6Te10–PbBi6Te10 section forms continuous series of solid solutions with a tetradymite-type layered structure. Lattice parameters of solid solutions were determined by full-profile Rietveld refinements and results show that both a and c parameters increase linearly with the Pb concentration according to Vegard's law. This study can help elucidate the phase equilibria of the SnTe-PbTe-Bi2Te3 pseudo-ternary system which provides important information for the design of new tetradymite-type layered phases with topological insulator and thermoelectric properties.