{"title":"花岗岩粉尘微颗粒增强生物苯并恶嗪复合材料的合成与表征","authors":"Ayyavu Chandramohan, Rangasamy Parthiban, Kannaiyan Sathishkumar, Kannaiyan Dinakaran, Alagar Muthukaruppan","doi":"10.1177/20412479231202586","DOIUrl":null,"url":null,"abstract":"In the current work, an effort has been made to create polymer composite materials using polybenzoxazine (PBz), which is synthesis from sustainable natural ingredients like furfurylamine (Fu), cardanol (Ca) and reinforced with granite dust made from industrial waste. Varied analytical approaches were used to examine the thermal, morphological, chemical structure, flame retardant and electrical properties of Ca-Fu-PBZ composites reinforced with granite dust at varied weight percentages (5, 10, 15 and 20 wt%). According to the weight percentage concentration of granite dust, the differential scanning calorimetry (DSC) data suggest that the value of Tg increased from 105 to 139°C. A pure Ca-Fu-PBZ benzoxazine matrix was found to have a dielectric constant of 3.97 at 1 MHz. Whereas 5, 10 and 20 wt percentages of reinforced Ca-Fu-PBZ composites with granite dust had dielectric constants of 3.54, 3.05, 2.51 and 2.02 at 1 MHz, respectively. For granite dust reinforced Ca-Fu-PBZ polybenzoxazine composites, the value of the limiting oxygen index (LOI) determined for the char yield obtained thermogravimetric analysis (TGA) shows greater values than those of the neat Ca-Fu-PBZ matrices. Using water contact angle, the hydrophobic behavior of polybenzoxazine composites reinforced with granite dust was investigated, and it was concluded that the hydrophobic behavior increased with the weight % of granite dust. Data from several investigations show that the thermally stable electrical insulation applications can employ the granite dust reinforced sustainable cardanol-furfurylamine based polybenzoxazine composites as potting compounds, sealants and composites.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of granite dust microparticles reinforced bio-benzoxazine composites\",\"authors\":\"Ayyavu Chandramohan, Rangasamy Parthiban, Kannaiyan Sathishkumar, Kannaiyan Dinakaran, Alagar Muthukaruppan\",\"doi\":\"10.1177/20412479231202586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current work, an effort has been made to create polymer composite materials using polybenzoxazine (PBz), which is synthesis from sustainable natural ingredients like furfurylamine (Fu), cardanol (Ca) and reinforced with granite dust made from industrial waste. Varied analytical approaches were used to examine the thermal, morphological, chemical structure, flame retardant and electrical properties of Ca-Fu-PBZ composites reinforced with granite dust at varied weight percentages (5, 10, 15 and 20 wt%). According to the weight percentage concentration of granite dust, the differential scanning calorimetry (DSC) data suggest that the value of Tg increased from 105 to 139°C. A pure Ca-Fu-PBZ benzoxazine matrix was found to have a dielectric constant of 3.97 at 1 MHz. Whereas 5, 10 and 20 wt percentages of reinforced Ca-Fu-PBZ composites with granite dust had dielectric constants of 3.54, 3.05, 2.51 and 2.02 at 1 MHz, respectively. For granite dust reinforced Ca-Fu-PBZ polybenzoxazine composites, the value of the limiting oxygen index (LOI) determined for the char yield obtained thermogravimetric analysis (TGA) shows greater values than those of the neat Ca-Fu-PBZ matrices. Using water contact angle, the hydrophobic behavior of polybenzoxazine composites reinforced with granite dust was investigated, and it was concluded that the hydrophobic behavior increased with the weight % of granite dust. Data from several investigations show that the thermally stable electrical insulation applications can employ the granite dust reinforced sustainable cardanol-furfurylamine based polybenzoxazine composites as potting compounds, sealants and composites.\",\"PeriodicalId\":20353,\"journal\":{\"name\":\"Polymers from Renewable Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers from Renewable Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20412479231202586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479231202586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Synthesis and characterization of granite dust microparticles reinforced bio-benzoxazine composites
In the current work, an effort has been made to create polymer composite materials using polybenzoxazine (PBz), which is synthesis from sustainable natural ingredients like furfurylamine (Fu), cardanol (Ca) and reinforced with granite dust made from industrial waste. Varied analytical approaches were used to examine the thermal, morphological, chemical structure, flame retardant and electrical properties of Ca-Fu-PBZ composites reinforced with granite dust at varied weight percentages (5, 10, 15 and 20 wt%). According to the weight percentage concentration of granite dust, the differential scanning calorimetry (DSC) data suggest that the value of Tg increased from 105 to 139°C. A pure Ca-Fu-PBZ benzoxazine matrix was found to have a dielectric constant of 3.97 at 1 MHz. Whereas 5, 10 and 20 wt percentages of reinforced Ca-Fu-PBZ composites with granite dust had dielectric constants of 3.54, 3.05, 2.51 and 2.02 at 1 MHz, respectively. For granite dust reinforced Ca-Fu-PBZ polybenzoxazine composites, the value of the limiting oxygen index (LOI) determined for the char yield obtained thermogravimetric analysis (TGA) shows greater values than those of the neat Ca-Fu-PBZ matrices. Using water contact angle, the hydrophobic behavior of polybenzoxazine composites reinforced with granite dust was investigated, and it was concluded that the hydrophobic behavior increased with the weight % of granite dust. Data from several investigations show that the thermally stable electrical insulation applications can employ the granite dust reinforced sustainable cardanol-furfurylamine based polybenzoxazine composites as potting compounds, sealants and composites.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.