{"title":"不连续相变诱发塑性行为对中锰钢力学行为的控制","authors":"Y. Sun, Z.C. Li, L.F. He, H.P. Li, R.D.K. Misra","doi":"10.1080/10667857.2023.2218227","DOIUrl":null,"url":null,"abstract":"Here, we address the continuing challenges and scientific gaps in obtaining high strength and high elongation in medium-Mn steels. Electron microscopy and X-ray diffraction studies clearly underscored that the discontinuous transformation-induced plasticity played a determining role in impacting high strength–toughness combination in conjunction with the microstructural constituents. The discontinuous TRIP effect during deformation involved stress relaxation, which was responsible for high ductility. An excellent combination of a high tensile strength in the range of 1238–1502 MPa and a total elongation of 25–33.6% was obtained when the steels were subjected to an intercritical hardening in the temperature range of 600–750°C and low tempering at 200°C. The intercritical hardening influenced the co-existence of austenite, ferrite and martensite in a manner such that the deformation behaviour varies with the Mn-content.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"10 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous transformation-induced plasticity behaviour in governing the mechanical behaviour in medium-Mn steels\",\"authors\":\"Y. Sun, Z.C. Li, L.F. He, H.P. Li, R.D.K. Misra\",\"doi\":\"10.1080/10667857.2023.2218227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we address the continuing challenges and scientific gaps in obtaining high strength and high elongation in medium-Mn steels. Electron microscopy and X-ray diffraction studies clearly underscored that the discontinuous transformation-induced plasticity played a determining role in impacting high strength–toughness combination in conjunction with the microstructural constituents. The discontinuous TRIP effect during deformation involved stress relaxation, which was responsible for high ductility. An excellent combination of a high tensile strength in the range of 1238–1502 MPa and a total elongation of 25–33.6% was obtained when the steels were subjected to an intercritical hardening in the temperature range of 600–750°C and low tempering at 200°C. The intercritical hardening influenced the co-existence of austenite, ferrite and martensite in a manner such that the deformation behaviour varies with the Mn-content.\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2023.2218227\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2218227","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Discontinuous transformation-induced plasticity behaviour in governing the mechanical behaviour in medium-Mn steels
Here, we address the continuing challenges and scientific gaps in obtaining high strength and high elongation in medium-Mn steels. Electron microscopy and X-ray diffraction studies clearly underscored that the discontinuous transformation-induced plasticity played a determining role in impacting high strength–toughness combination in conjunction with the microstructural constituents. The discontinuous TRIP effect during deformation involved stress relaxation, which was responsible for high ductility. An excellent combination of a high tensile strength in the range of 1238–1502 MPa and a total elongation of 25–33.6% was obtained when the steels were subjected to an intercritical hardening in the temperature range of 600–750°C and low tempering at 200°C. The intercritical hardening influenced the co-existence of austenite, ferrite and martensite in a manner such that the deformation behaviour varies with the Mn-content.
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.