{"title":"面对高机动规避者的最优协同制导律设计","authors":"","doi":"10.47176/jcme.42.1.9081","DOIUrl":null,"url":null,"abstract":"The problem of cooperative guidance of two pursuers against an evader equipped with higher maneuverability is investigated. The goal is that the distance between the evader and at least one of the pursuers becomes less than a predetermined threshold at the end of the flight time. To achieve this goal, firstly, the roles of pursuers are divided into two units, which include 1) pursuing the evader 2) Observing the evader’s scape space. Secondly, a novel cooperative guidance law based on the optimal separation of roles of the pursuers is proposed and formulated into a constrained nonlinear optimal control problem. Thirdly, the problem is solved using the Direct Collocation with Nonlinear Programming (DCNLP) method which is an optimization approach. Finally, several numerical simulations are presented to verify the effectiveness of the proposed cooperative guidance law.","PeriodicalId":31381,"journal":{"name":"Ravishhayi adadi dar Muhandisi","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an Optimal Cooperative Guidance Law Confronting Evaders with High Maneuver\",\"authors\":\"\",\"doi\":\"10.47176/jcme.42.1.9081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of cooperative guidance of two pursuers against an evader equipped with higher maneuverability is investigated. The goal is that the distance between the evader and at least one of the pursuers becomes less than a predetermined threshold at the end of the flight time. To achieve this goal, firstly, the roles of pursuers are divided into two units, which include 1) pursuing the evader 2) Observing the evader’s scape space. Secondly, a novel cooperative guidance law based on the optimal separation of roles of the pursuers is proposed and formulated into a constrained nonlinear optimal control problem. Thirdly, the problem is solved using the Direct Collocation with Nonlinear Programming (DCNLP) method which is an optimization approach. Finally, several numerical simulations are presented to verify the effectiveness of the proposed cooperative guidance law.\",\"PeriodicalId\":31381,\"journal\":{\"name\":\"Ravishhayi adadi dar Muhandisi\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ravishhayi adadi dar Muhandisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47176/jcme.42.1.9081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ravishhayi adadi dar Muhandisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/jcme.42.1.9081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of an Optimal Cooperative Guidance Law Confronting Evaders with High Maneuver
The problem of cooperative guidance of two pursuers against an evader equipped with higher maneuverability is investigated. The goal is that the distance between the evader and at least one of the pursuers becomes less than a predetermined threshold at the end of the flight time. To achieve this goal, firstly, the roles of pursuers are divided into two units, which include 1) pursuing the evader 2) Observing the evader’s scape space. Secondly, a novel cooperative guidance law based on the optimal separation of roles of the pursuers is proposed and formulated into a constrained nonlinear optimal control problem. Thirdly, the problem is solved using the Direct Collocation with Nonlinear Programming (DCNLP) method which is an optimization approach. Finally, several numerical simulations are presented to verify the effectiveness of the proposed cooperative guidance law.