半空间中对数聚合物的稳态测量和KPZ方程

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
Guillaume Barraquand, Ivan Corwin
{"title":"半空间中对数聚合物的稳态测量和KPZ方程","authors":"Guillaume Barraquand, Ivan Corwin","doi":"10.1214/23-aop1634","DOIUrl":null,"url":null,"abstract":"We construct explicit one-parameter families of stationary measures for the Kardar–Parisi–Zhang equation in half-space with Neumann boundary conditions at the origin, as well as for the log-gamma polymer model in a half-space. The stationary measures are stochastic processes that depend on the boundary condition as well as a parameter related to the drift at infinity. They are expressed in terms of exponential functionals of Brownian motions and gamma random walks. We conjecture that these constitute all extremal stationary measures for these models. The log-gamma polymer result is proved through a symmetry argument related to half-space Whittaker processes which we expect may be applicable to other integrable models. The KPZ result comes as an intermediate disorder limit of the log-gamma polymer result and confirms the conjectural description of these stationary measures from Barraquand and Le Doussal (2021). To prove the intermediate disorder limit, we provide a general half-space polymer convergence framework that extends works of (J. Stat. Phys. 181 (2020) 2372–2403; Electron. J. Probab. 27 (2022) Paper No. 45; Ann. Probab. 42 (2014) 1212–1256).","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Stationary measures for the log-gamma polymer and KPZ equation in half-space\",\"authors\":\"Guillaume Barraquand, Ivan Corwin\",\"doi\":\"10.1214/23-aop1634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct explicit one-parameter families of stationary measures for the Kardar–Parisi–Zhang equation in half-space with Neumann boundary conditions at the origin, as well as for the log-gamma polymer model in a half-space. The stationary measures are stochastic processes that depend on the boundary condition as well as a parameter related to the drift at infinity. They are expressed in terms of exponential functionals of Brownian motions and gamma random walks. We conjecture that these constitute all extremal stationary measures for these models. The log-gamma polymer result is proved through a symmetry argument related to half-space Whittaker processes which we expect may be applicable to other integrable models. The KPZ result comes as an intermediate disorder limit of the log-gamma polymer result and confirms the conjectural description of these stationary measures from Barraquand and Le Doussal (2021). To prove the intermediate disorder limit, we provide a general half-space polymer convergence framework that extends works of (J. Stat. Phys. 181 (2020) 2372–2403; Electron. J. Probab. 27 (2022) Paper No. 45; Ann. Probab. 42 (2014) 1212–1256).\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aop1634\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aop1634","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 13

摘要

我们构造了半空间中具有Neumann边界条件的kardar - parisii - zhang方程以及半空间中log-gamma聚合物模型的显式单参数平稳测度。平稳测度是依赖于边界条件以及与无穷远处漂移有关的参数的随机过程。它们是用布朗运动和随机游走的指数函数表示的。我们推测这些构成了这些模型的所有极端平稳测度。通过与半空间Whittaker过程有关的对称性论证证明了log-gamma聚合物的结果,我们期望该结果可以适用于其他可积模型。KPZ结果是log-gamma聚合物结果的中间无序极限,证实了Barraquand和Le Doussal(2021)对这些平稳测量的推测性描述。为了证明中间无序极限,我们提供了一个一般的半空间聚合物收敛框架,扩展了[J. Stat. Phys. 181 (2020) 2372-2403;电子。J. Probab. 27(2022)第45号论文;安。约42(2014)1212-1256)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary measures for the log-gamma polymer and KPZ equation in half-space
We construct explicit one-parameter families of stationary measures for the Kardar–Parisi–Zhang equation in half-space with Neumann boundary conditions at the origin, as well as for the log-gamma polymer model in a half-space. The stationary measures are stochastic processes that depend on the boundary condition as well as a parameter related to the drift at infinity. They are expressed in terms of exponential functionals of Brownian motions and gamma random walks. We conjecture that these constitute all extremal stationary measures for these models. The log-gamma polymer result is proved through a symmetry argument related to half-space Whittaker processes which we expect may be applicable to other integrable models. The KPZ result comes as an intermediate disorder limit of the log-gamma polymer result and confirms the conjectural description of these stationary measures from Barraquand and Le Doussal (2021). To prove the intermediate disorder limit, we provide a general half-space polymer convergence framework that extends works of (J. Stat. Phys. 181 (2020) 2372–2403; Electron. J. Probab. 27 (2022) Paper No. 45; Ann. Probab. 42 (2014) 1212–1256).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信