关于多变量正则函数的Banach空间。黎曼积分的类比

IF 0.6 Q3 MATHEMATICS
V.N. Baranov, V.I. Rodionov, A.G. Rodionova
{"title":"关于多变量正则函数的Banach空间。黎曼积分的类比","authors":"V.N. Baranov, V.I. Rodionov, A.G. Rodionova","doi":"10.35634/vm230301","DOIUrl":null,"url":null,"abstract":"The paper introduces the concept of a regulated function of several variables $f\\colon X\\to\\mathbb R$, where $X\\subseteq \\mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\\subseteq\\mathbb R^n$, is regulated (belongs to the space $\\langle{\\rm G(}X),\\|\\cdot\\ |\\rangle$). The completeness of the space ${\\rm G}(X)$ in the $\\sup$-norm $\\|\\cdot\\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\\rm G}^J(X)$ is defined and studied, which differs from the space ${\\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\\rm G}(X)$ listed above carry over to the space ${\\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\\subseteq\\mathbb R^n$, and the function $f\\colon X\\to\\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\\in{\\rm G}^J(X)$ are $J$-integrable.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral\",\"authors\":\"V.N. Baranov, V.I. Rodionov, A.G. Rodionova\",\"doi\":\"10.35634/vm230301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces the concept of a regulated function of several variables $f\\\\colon X\\\\to\\\\mathbb R$, where $X\\\\subseteq \\\\mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\\\\subseteq\\\\mathbb R^n$, is regulated (belongs to the space $\\\\langle{\\\\rm G(}X),\\\\|\\\\cdot\\\\ |\\\\rangle$). The completeness of the space ${\\\\rm G}(X)$ in the $\\\\sup$-norm $\\\\|\\\\cdot\\\\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\\\\rm G}^J(X)$ is defined and studied, which differs from the space ${\\\\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\\\\rm G}(X)$ listed above carry over to the space ${\\\\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\\\\subseteq\\\\mathbb R^n$, and the function $f\\\\colon X\\\\to\\\\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\\\\in{\\\\rm G}^J(X)$ are $J$-integrable.\",\"PeriodicalId\":43239,\"journal\":{\"name\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm230301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了若干变量的正则函数$f\冒号X\到$ mathbb R$的概念,其中$X\subseteq \mathbb R^n$。这个定义是基于集合X的一个特殊划分的概念和函数f在划分的元素上的振荡的概念。证明了在开有界集$X_0\subseteq\mathbb R^n$闭包$X$上定义并连续的每个函数都是正则的(属于空间$\langle{\rm G(}X),\|\cdot\ |\rangle$)。证明了$\sup$-norm $\|\cdot\|$空间${\rm G}(X)$的完备性。这是阶跃函数空间的闭包。在第二部分中,定义并研究了空间${\rm G}^J(X)$,它与空间${\rm G}(X)$的不同之处在于它的定义使用$J$-分区而不是分区,其元素是Jordan可测开集。上面列出的空间${\rm G}(X)$的性质也可以转到空间${\rm G}^J(X)$。最后,定义了多元函数的$J$-可积性。证明了如果$X$是开有界集$X_0\subseteq\mathbb R^n$的约当可测闭包,且函数$f\: X\to\mathbb R$是黎曼可积的,则它是$J$-可积的。在这种情况下,积分的值重合。所有函数$f\in{\rm G}^J(X)$是$J$-可积的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral
The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信