在立方体和子空间投影上

IF 0.6 Q3 MATHEMATICS
A.A. Boykov, A.V. Seliverstov
{"title":"在立方体和子空间投影上","authors":"A.A. Boykov, A.V. Seliverstov","doi":"10.35634/vm230302","DOIUrl":null,"url":null,"abstract":"We consider the arrangement of vertices of a unit multidimensional cube, an affine subspace, and its orthogonal projections onto coordinate subspaces. Upper and lower bounds on the subspace dimension are given under which some orthogonal projection always preserves the incidence relation between the subspace and cube vertices. Some oblique projections are also considered. Moreover, a brief review of the history of the development of multidimensional descriptive geometry is given. Analytic and synthetic methods in geometry diverged since the 17th century. Although both synthesis and analysis are tangled, from this time forth many geometers as well as engineers keep up a nice distinction. One can find references to the idea of higher-dimensional spaces in the 18th-century works, but proper development has been since the middle of the 19th century. Soon such works have appeared in Russian. Next, mathematicians generalized their theories to many dimensions. Our new results are obtained by both analytic and synthetic methods. They illustrate the complexity of pseudo-Boolean programming problems because reducing the problem dimension by orthogonal projection meets obstacles in the worst case.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a cube and subspace projections\",\"authors\":\"A.A. Boykov, A.V. Seliverstov\",\"doi\":\"10.35634/vm230302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the arrangement of vertices of a unit multidimensional cube, an affine subspace, and its orthogonal projections onto coordinate subspaces. Upper and lower bounds on the subspace dimension are given under which some orthogonal projection always preserves the incidence relation between the subspace and cube vertices. Some oblique projections are also considered. Moreover, a brief review of the history of the development of multidimensional descriptive geometry is given. Analytic and synthetic methods in geometry diverged since the 17th century. Although both synthesis and analysis are tangled, from this time forth many geometers as well as engineers keep up a nice distinction. One can find references to the idea of higher-dimensional spaces in the 18th-century works, but proper development has been since the middle of the 19th century. Soon such works have appeared in Russian. Next, mathematicians generalized their theories to many dimensions. Our new results are obtained by both analytic and synthetic methods. They illustrate the complexity of pseudo-Boolean programming problems because reducing the problem dimension by orthogonal projection meets obstacles in the worst case.\",\"PeriodicalId\":43239,\"journal\":{\"name\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm230302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个单位多维立方体的顶点排列,一个仿射子空间,以及它在坐标子空间上的正交投影。给出了子空间维数的上界和下界,在这个上界下,某些正交投影总是保持子空间与立方体顶点之间的关联关系。还考虑了一些斜投影。此外,简要回顾了多维描述几何的发展历史。几何中的解析方法和综合方法自17世纪以来就出现了分歧。虽然综合和分析都是纠缠在一起的,但从那时起,许多几何学家和工程师都保持着很好的区别。人们可以在18世纪的作品中找到对高维空间概念的参考,但自19世纪中期以来才有了适当的发展。不久,俄文就出现了这样的作品。接下来,数学家将他们的理论推广到多个维度。我们的新结果是通过解析和综合方法得到的。它们说明了伪布尔规划问题的复杂性,因为用正交投影降维在最坏的情况下会遇到障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a cube and subspace projections
We consider the arrangement of vertices of a unit multidimensional cube, an affine subspace, and its orthogonal projections onto coordinate subspaces. Upper and lower bounds on the subspace dimension are given under which some orthogonal projection always preserves the incidence relation between the subspace and cube vertices. Some oblique projections are also considered. Moreover, a brief review of the history of the development of multidimensional descriptive geometry is given. Analytic and synthetic methods in geometry diverged since the 17th century. Although both synthesis and analysis are tangled, from this time forth many geometers as well as engineers keep up a nice distinction. One can find references to the idea of higher-dimensional spaces in the 18th-century works, but proper development has been since the middle of the 19th century. Soon such works have appeared in Russian. Next, mathematicians generalized their theories to many dimensions. Our new results are obtained by both analytic and synthetic methods. They illustrate the complexity of pseudo-Boolean programming problems because reducing the problem dimension by orthogonal projection meets obstacles in the worst case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信