半群及相关结构的有限覆盖

Casey Donoven, Luise-Charlotte Kappe
{"title":"半群及相关结构的有限覆盖","authors":"Casey Donoven, Luise-Charlotte Kappe","doi":"10.22108/ijgt.2022.131538.1759","DOIUrl":null,"url":null,"abstract":"For a semigroup $S$, the covering number of $S$ with respect to semigroups, $\\sigma_s(S)$, is the minimum number of proper subsemigroups of $S$ whose union is $S$. This article investigates covering numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids. Our three main theorems give a complete description of the covering number of finite semigroups, finite inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that is neither monogenic nor a group, its covering number is two. For all $n\\geq 2$, there exists an inverse semigroup with covering number $n$, similar to the case of loops. Finally, a monoid that is neither a group nor a semigroup with an identity adjoined has covering number two as well.","PeriodicalId":492099,"journal":{"name":"DOAJ (DOAJ: Directory of Open Access Journals)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite coverings of semigroups and related structures\",\"authors\":\"Casey Donoven, Luise-Charlotte Kappe\",\"doi\":\"10.22108/ijgt.2022.131538.1759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a semigroup $S$, the covering number of $S$ with respect to semigroups, $\\\\sigma_s(S)$, is the minimum number of proper subsemigroups of $S$ whose union is $S$. This article investigates covering numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids. Our three main theorems give a complete description of the covering number of finite semigroups, finite inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that is neither monogenic nor a group, its covering number is two. For all $n\\\\geq 2$, there exists an inverse semigroup with covering number $n$, similar to the case of loops. Finally, a monoid that is neither a group nor a semigroup with an identity adjoined has covering number two as well.\",\"PeriodicalId\":492099,\"journal\":{\"name\":\"DOAJ (DOAJ: Directory of Open Access Journals)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DOAJ (DOAJ: Directory of Open Access Journals)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/ijgt.2022.131538.1759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOAJ (DOAJ: Directory of Open Access Journals)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/ijgt.2022.131538.1759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于半群$S$, $S$对半群$\sigma_s(S)$的覆盖数是$S$的并集为$S$的适当子半群的最小个数。研究了半群的覆盖数以及逆半群和模群的类似定义的覆盖数。我们的三个主要定理给出了有限半群、有限逆半群和单群(模群和无限半群)的覆盖数的完整描述。对于既非单基因又非群的有限半群,其覆盖数为2。对于所有$n\geq 2$,存在一个覆盖数为$n$的逆半群,类似于循环的情况。最后,一个单群既不是群也不是半群,并且有一个恒等相连,它也覆盖了第二项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite coverings of semigroups and related structures
For a semigroup $S$, the covering number of $S$ with respect to semigroups, $\sigma_s(S)$, is the minimum number of proper subsemigroups of $S$ whose union is $S$. This article investigates covering numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids. Our three main theorems give a complete description of the covering number of finite semigroups, finite inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that is neither monogenic nor a group, its covering number is two. For all $n\geq 2$, there exists an inverse semigroup with covering number $n$, similar to the case of loops. Finally, a monoid that is neither a group nor a semigroup with an identity adjoined has covering number two as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信