{"title":"半群及相关结构的有限覆盖","authors":"Casey Donoven, Luise-Charlotte Kappe","doi":"10.22108/ijgt.2022.131538.1759","DOIUrl":null,"url":null,"abstract":"For a semigroup $S$, the covering number of $S$ with respect to semigroups, $\\sigma_s(S)$, is the minimum number of proper subsemigroups of $S$ whose union is $S$. This article investigates covering numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids. Our three main theorems give a complete description of the covering number of finite semigroups, finite inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that is neither monogenic nor a group, its covering number is two. For all $n\\geq 2$, there exists an inverse semigroup with covering number $n$, similar to the case of loops. Finally, a monoid that is neither a group nor a semigroup with an identity adjoined has covering number two as well.","PeriodicalId":492099,"journal":{"name":"DOAJ (DOAJ: Directory of Open Access Journals)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite coverings of semigroups and related structures\",\"authors\":\"Casey Donoven, Luise-Charlotte Kappe\",\"doi\":\"10.22108/ijgt.2022.131538.1759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a semigroup $S$, the covering number of $S$ with respect to semigroups, $\\\\sigma_s(S)$, is the minimum number of proper subsemigroups of $S$ whose union is $S$. This article investigates covering numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids. Our three main theorems give a complete description of the covering number of finite semigroups, finite inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that is neither monogenic nor a group, its covering number is two. For all $n\\\\geq 2$, there exists an inverse semigroup with covering number $n$, similar to the case of loops. Finally, a monoid that is neither a group nor a semigroup with an identity adjoined has covering number two as well.\",\"PeriodicalId\":492099,\"journal\":{\"name\":\"DOAJ (DOAJ: Directory of Open Access Journals)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DOAJ (DOAJ: Directory of Open Access Journals)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/ijgt.2022.131538.1759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOAJ (DOAJ: Directory of Open Access Journals)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/ijgt.2022.131538.1759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite coverings of semigroups and related structures
For a semigroup $S$, the covering number of $S$ with respect to semigroups, $\sigma_s(S)$, is the minimum number of proper subsemigroups of $S$ whose union is $S$. This article investigates covering numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids. Our three main theorems give a complete description of the covering number of finite semigroups, finite inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that is neither monogenic nor a group, its covering number is two. For all $n\geq 2$, there exists an inverse semigroup with covering number $n$, similar to the case of loops. Finally, a monoid that is neither a group nor a semigroup with an identity adjoined has covering number two as well.